А.Е.Сутягин 2017г

Здания (жилище) - часть культуры человека. Искусственный артефакт. Появляются вместе с человеком. Элемент очеловечивания природы.
Предназначение здания, как такового - защищать человека, человеческий организм, его здоровье от влияния природы, от влияния внешних природных) факторов. А также создавать пригодную среду обитания невзирая на внешние климатические воздействия.

Любое здание состоит, прежде всего, из конструкций, выполненных из того или иного материала. а также из различного рода инженерных систем предназначенных для комфортной среды и удовлетворении основных физиологических потребностей людей.

Определение понятий - здание и сооружение.
Здание - предназначено для постоянного пребывания людей.
Сооружение - не предназначено для постоянного пребывания людей. Необходимо для осуществления специфических технологических задач.

Составные части здания (конструкции).
Фундамент - передача нагрузки от всего здания на естественное основание (грунт). (“Корень здания”).
Стены - защита от ветровых и тепловых воздействий.
Каркас - скелет здания.
Перекрытия - восприятие нагрузки, от находящихся в здании людей, мебели и оборудования.
Кровля - защита здания от атмосферных осадков (снег, дождь), солнечных лучей, тепловых воздействий.

Количество видов и типов частей здания настолько разнообразно и сильно зависит от назначения здания. В рамках данной статьи остановимся на основных моментах.

Конструкции здания подразделяются на несущие и ограждающие конструкции.
Несущие конструкции - воспринимают силовые воздействия от других частей здания и подвижной нагрузки (людей) и передают их на основание (через фундаменты). Параметры несущих конструкций назначаются только на основании специализированных расчетов.
Ограждающие конструкции (ненесущие) - конструкции предназначенные для защиты людей от внешних факторов и обеспечивающие нормальное функционирования здания согласно назначению здания. Например окна и двери.
Ограждающие конструкции первыми воспринимают силовые воздействия и передают их на несущие конструкции. Четкой градации между этими конструкция провести затруднительно. Обычно в зданиях (особенно в прошлом) те или иные конструкции могут сочетать функции несущих и ограждающих конструкций.
Например, кирпичная кладка много веков - это и защита от тепловых воздействий и хороший несущий элемент.
В индустриальных зданиях стараются разделить эти функции. (Например каркас и сендвич-панели).

Здания и сооружения должны сопротивляться (выдерживать) требуемым нормативными документами нагрузкам и воздействиям.

Статья 7 Федерального закона N 384-ФЗ "Технический регламент о безопасности зданий и сооружений" вводит понятие механической безопасности здания или сооружения, а именно:

"Строительные конструкции и основание здания или сооружения должны обладать такой прочностью и устойчивостью, чтобы в процессе строительства и эксплуатации не возникало угрозы причинения вреда жизни или здоровью людей, имуществу физических или юридических лиц, государственному или муниципальному имуществу, окружающей среде, жизни и здоровью животных и растений в результате:

1) разрушения отдельных несущих строительных конструкций или их частей;

2) разрушения всего здания, сооружения или их части;

3) деформации недопустимой величины строительных конструкций, основания здания или сооружения и геологических массивов прилегающей территории;

4) повреждения части здания или сооружения, сетей инженерно-технического обеспечения или систем инженерно-технического обеспечения в результате деформации, перемещений либо потери устойчивости несущих строительных конструкций, в том числе отклонений от вертикальности."

Нагрузки и воздействия.

Нагрузки - то что непосредственно оказывают силовые воздействия на элемент конструкции. Воздействия - то что вызывает (опосредованно) в конструкциях внутренние усилия или деформации.

Нагрузки от веса несущих и ограждающих конструкций (статические)
. Атмосферные нагрузки (динамические)
.. снеговая
.. дождевая
.. ветровая (квазистатические и динамические)
.. гололедная
.. температурная (воздействие)
.. ледовая
.. волновая (штормовая)
.. магнитная и электромагнитная
и другие.
. Воздействия смещений земной коры
.. сейсмическая (тектоническая)
.. просадочная (в результате замачивания грунтов)
.. влияние горных выработок
.. влияние карстово-суффозионных процессов
.. Аварийные (особые)
.. пожар (обрушение и тепловое воздействие)
.. столкновение с транспортным средством)
.. взрывное
.. обрушение частей здания
.. Нагрузки от редких природных факторов
.. ураганы
.. смерчи
.. цунами
и др.

Полезные нагрузки (для чего собственно и проектируется здание)

Нагрузки от веса людей (“живая” нагрузка) (квазистатическая)
. нагрузки от мебели и бытового оборудования (квазистатическая)
. Технологические нагрузки (производство)
. Вес и динамические воздействия производственного оборудования.
. Крановые нагрузки
. Нагрузки от внутрицехового транспорта
. Нагрузки от лифтов (и тп.).
. Температурные технологические нагрузки
. Повышенное давление (вакуум)
. Технологические нагрузки на сооружения (мосты, кран, дамбы, плотины, аэродромы и т.д.)

По характеру воздействия нагрузки делятся на
. кратковременные (многократно-повторяющиеся или эпизодические)
. длительные
. постоянные

С точки зрения: вызывают ли нагрузки динамические усилия в конструкциях.
. статические
. квазистатические
. динамические (пульсационные, ударные, периодические и т.)

Расчетное и эксплуатационное значение нагрузки. При проектировании несущих конструкции для разных видов расчетов используют несколько значений одной и той же нагрузки. Как минимум Расчетное значение (повышенное) и нормативное значение (эксплуатационное).

Сочетание нагрузок. Каждая нагрузка для расчета элемента здания может и нагружать этот элемент и разгружать этот элемент. Поэтому в расчете используется определенное сочетание нагрузок, а именно такое, которое максимально нагружает рассчитываемый элемент здания.

Надо понимать, что величина нагрузки (как полезной, так и природной) носить случайный ("волатильный") характер. В нормативной документации определяется максимальная величина нагрузки превышение, которой маловероятно (хотя и возможно) в течении всего срока эксплуатации здания (70-150 лет).

Ввиду этого, для сооружений повышенного уровня ответственности (и, соответственно, большего срока эксплуатации) вводится повышающие коэффициенты, на которые умножаются "базовые" значения нагрузок. (коэффициент надежности по ответственности здания от 1,1 до 1,2).

Подробнее о значении тех или иных видов нагрузок см. список прилагаемой литературы.

ЛИТЕРАТУРА

1. Федеральный закон от 30 декабря 2009 г. N 384-ФЗ "Технический регламент о безопасности зданий и сооружений".

2. ГОСТ 27751-2014 Надежность строительных конструкций и оснований. Основные положения.

3. СП 20.13330.2016 Нагрузки и воздействия. Актуализированная редакция СНиП 2.01.07-85.

4. Нагрузки и воздействия на здания и сооружения. В.Н.Гордеев, А.И.Лантух-Лященко, В.А. Пашинский, А.В.Перельмутер, С.Ф.Пичугин; под. общей ред. А.В.Перельмутера. 3-е изд., перераб. - М.: Издательство С, 2009г.

В ходе проектирования нужно учесть всё, чему здание должно сопротивляться, дабы не терять своих эксплуатационных и прочностных качеств. Нагрузками принято считать внешние механические силы, действующие на здание, а воздействиями - внутренние явления. Для уяснения вопроса проклассифицируем все нагрузки и воздействия по следующим признакам.

По продолжительности действия:

  • постоянные - собственная масса конструкции, масса и давление грунта в насыпях или засыпках;
  • длительные - масса оборудования, перегородок, мебели, людей, снеговая нагрузка, сюда же относятся воздействия, обусловленные усадкой и ползучестью строительных материалов;
  • кратковременные - температурные, ветровые и гололёдные климатические воздействия, а также связанные с изменением влажности, солнечной радиацией;
  • особые - нормируемые нагрузки и воздействия (например, сейсмические, при воздействии пожара и пр.).

Среди проектировщиков существует также термин полезная нагрузка, значение которого в нормативных документах не закреплено, но термин бытует в практике строительства. Под полезной нагрузкой подразумевается сумма некоторых временных нагрузок, которые всегда присутствуют в здании: люди, мебель, оборудование. Например, для жилого дома она составляет 150...200 кг/м 2 (1,5...2 мПа), а для офисного - 300...600 кг/м 2 (3...6 мПа).

По характеру работы:

  • статические - собственная масса конструкции, снеговой покров, оборудование;
  • динамические - вибрация, порыв ветра.

По месту приложения усилий:

  • сосредоточенные - оборудование, мебель;
  • равномерно распределённые - масса конструкции, снеговой покров.

По природе воздействия:

  • нагрузки силового характера (механические) - это нагрузки, которые вызывают реактивные силы; к этим нагрузкам относятся все выше приведённые примеры;
  • воздействия несилового характера:
    • перемены температур наружного воздуха, что вызывает линейные температурные деформации конструкций здания;
    • потоки парообразной влаги из помещений - влияют на материал наружных ограждений;
    • атмосферная и грунтовая влага, химически агрессивное воздействие окружающей среды;
    • солнечная радиация;
    • электромагнитное излучение, шум и т.п., влияющие на здоровье человека.

Все нагрузки силового характера закладываются в инженерные расчёты. Влияние воздействий несилового характера также обязательно учитывается при проектировании. Посмотрим, например, как температурное воздействие влияет на конструкцию. Дело в том, что под влиянием температуры конструкция стремится сжаться или расшириться, т.е. измениться в размерах. Этому препятствуют другие конструкции, с которыми данная конструкция связана. Следовательно, в тех местах, где конструкции взаимодействуют, возникают реактивные силы, которые нужно воспринять. Также в протяжённых зданиях необходимо предусмотреть зазоры.

Расчётам подвергаются и другие воздействия: расчёт на паропроницание, теплотехнический расчёт и т.д.

Каждое здание или сооружение неизбежно испытывает воздействие тех или иных нагрузок. Это обстоятельство заставляет нас, расчетчиков, анализировать работу сооружения с позиции наиболее неблагоприятного их сочетания - чтобы даже в случае его проявления конструкция оставалась прочной, устойчивой, выносливой.

Для конструкции нагрузка является внешним фактором, который переводит ее из состояния покоя в напряженно-деформированное состояние. Сбор нагрузок не является конечной целью инженера - эти процедуры относятся к первому этапу алгоритма расчета конструкции (рассмотрен в этой статье).

Классификация нагрузок

В первую очередь, нагрузки классифицируют по времени воздействия на конструкцию:

  • постоянные нагрузки (действуют на протяжении всего жизненного цикла здания)
  • временные нагрузки (действуют время от времени, периодически или разово)

Сегментация нагрузок позволяет моделировать работу конструкции и выполнять соответствующие расчеты более гибко, с учетом вероятности появления той или иной нагрузки и вероятности их одновременного появления.

Единицы измерения и взаимные преобразования нагрузок

В сфере строительства сосредоточенные силовые нагрузки измеряются, как правило, в килоньютонах (кН), а моментные нагрузки - в кНм. Напомню, что согласно Международной системе единиц (СИ) сила измеряется в Ньютонах (Н), длина - в метрах (м).

Распределенные по объему нагрузки измеряются в кН/м3, по площади - в кН/м2, по длине - в кН/м.

Рисунок 1. Виды нагрузок:
1 - сосредоточенные силы; 2 - сосредоточенный момент; 3 - нагрузка на единицу объема;
4 - нагрузка, распределенная по площади; 5 - нагрузка, распределенная по длине

Любую сосредоточенную нагрузку \(F\) можно получить, зная объем элемента \(V\) и объемный вес его материала \(g\):

Получить нагрузку, распределенную по площади элемента, можно через его объемный вес и толщину \(t\) (размер, перпендикулярный плоскости нагрузки):

Аналогично, распределенная по длине нагрузка получается произведением объемного веса элемента \(g\) на толщину и ширину элемента (размеры в направлениях, перпендикулярных плоскости нагрузки):

где \(A\) - площадь поперечного сечения элемента, м 2 .

Кинематические воздействия измеряются в метрах (прогибы) или радианах (углы поворотов). Температурные нагрузки измеряются в градусах Цельсия (°C) или других единицах температуры, хотя могут задаваться и в единицах длины (м) или быть безразмерными (температурные расширения).

Предполагается, что все опорные точки конструкции движутся поступательно по одинаковому закону Х 0 = XJ ()

При землетрясении грунты основания здания приходят в движение, что показано на рисунке 14.

При этом на каждую единицу объема сооружения действует инерционная сила, зависящая от сосредоточенных в этих объемах инерционных параметров - масс и жест- костных характеристик сооружения. Эти инерционные силы называются сейсмическими силами или сейсмическими нагрузками и приводят сооружение в напряженно- деформированное состояние.

Рассмотрим основные подходы, позволяющие определить такие важные параметры, как жесткость, собственную частоту и формы колебаний сооружения. Наиболее просто выбрать в качестве модели здания линейный осциллятор, воздействие на который моделируется горизонтальным перемещением основания по заданному закону X Q = X 0 (t), а система имеет одну степень свободы, определяемую горизонтальным перемещением сосредоточенной массы т (рис. 15).

Таким образом, полное перемещение Х 0 (0 массы т в любой момент времени складывается из «переносного» перемещения Xj(t) и относительного перемещения, вызванного изгибом стержня X 2 (t):

Составим уравнение движения, используя метод перемещений, ибо нас интересует значение восстанавливающей силы (силы упругости), равной


Расчетная схема линейного осциллятора

где -перемещение Х т массы в горизонтальном

направлении, вызванное действием единичной силы - жесткость линейного осциллятора.

Уравнение равновесия массы будет

Тогда с учетом:

где со 2 - частота собственных колебаний осциллятора, получаем уравнение движения, в котором параметром, определяющим колебательную систему, является частота собственных колебаний этой системы:

Сейсмические нагрузки могут действовать в любом направлении, поэтому для реальных зданий и сооружений уравнения, определяющие их движение при сейсмической нагрузке, весьма громоздки, однако при этом система характеризуется все той же частотой собственных колебаний.

Если обобщить задачу сейсмостойкого строительства, то с точки зрения выведенных уравнений она состоит в выявлении тех конструкций, которые являются наименее прочными и жесткими, и соответственно в увеличении их прочности (сейсмоусиление) или снижении нагрузки на них (сейсмоизоляция).

В современных нормативных документах изложены общие требования по обеспечению механической безопасности зданий и сооружений. Так, в ч. 6 ст. 15 Федерального закона № 384 «Технический регламент о безопасности зданий и сооружений» выдвинуты требования о том, что «в процессе строительства и эксплуатации здания или сооружения его строительные конструкции и основание не достигнут предельного состояния по прочности и устойчивости... при вариантах одновременного действия нагрузок и воздействий».

За предельное состояние строительных конструкций и основания по прочности и устойчивости должно быть принято состояние, характеризующееся:

  • разрушением любого характера;
  • потерей устойчивости формы;
  • потерей устойчивости положения;
  • нарушением эксплуатационной пригодности и иными явлениями, связанными с угрозой причинения вреда жизни и здоровью людей, имуществу физических или юридических лиц, государственному или муниципальному имуществу, окружающей среде, жизни и здоровью животных и растений.

В расчетах строительных конструкций и основания должны быть учтены все виды нагрузок, соответствующих функциональному назначению и конструктивному решению здания или сооружения, климатические, а в необходимых случаях технологические воздействия, а также усилия, вызываемые деформацией строительных конструкций и основания.

Здание или сооружение на территории, на которой возможно проявление опасных природных процессов и явлений и (или) техногенных воздействий, должно быть спроектировано и построено таким образом, чтобы в процессе эксплуатации здания или сооружения опасные природные процессы и явления и (или) техногенные воздействия не вызывали последствий, указанных в ст. 7 Федерального закона № 384 , и (или) иных событий, создающих угрозу причинения вреда жизни или здоровью людей, имуществу физических или юридических лиц, государственному или муниципальному имуществу, окружающей среде, жизни и здоровью животных и растений.

Для элементов строительных конструкций, характеристики которых, учтенные в расчетах прочности и устойчивости здания или сооружения, могут изменяться в процессе эксплуатации под воздействием климатических факторов или агрессивных факторов наружной и внутренней среды, в том числе под воздействием сейсмических процессов, которые могут вызывать усталостные явления в материале строительных конструкций, в проектной документации должны быть дополнительно указаны параметры, характеризующие сопротивление таким воздействиям, или мероприятия по защите от них.

При оценке последствий землетрясения используется классификация зданий, приведенная в сейсмической шкале MMSK - 86 . В соответствии с этой шкалой здания разделяются на две группы:

  • 1) здания и типовые сооружения без антисейсмических мероприятий;
  • 2) здания и типовые сооружения с антисейсмическими мероприятиями.

Здания и типовые сооружения без антисейсмических мероприятий разделяют на типы.

А1 - местные здания. Здания со стенами из местных строительных материалов: глинобитные без каркаса; саманные или из сырцового кирпича без фундамента; выполненные из скатанного или рваного камня на глиняном растворе и без регулярной (из кирпича или камня правильной формы) кладки в углах ит.п.

А2 - местные здания. Здания из самана или сырцового кирпича, с каменными, кирпичными или бетонными фундаментами; выполненные из рваного камня на известковом, цементном или сложном растворе с регулярной кладкой в углах; выполненные из пластового камня на известковом, цементном или сложном растворе; выполненные из кладки типа «мидис»; здания с деревянным каркасом с заполнением из самана или глины, с тяжелыми земляными или глиняными крышами; сплошные массивные ограды из самана или сырцового кирпича и т. п.

Б - местные здания. Здания с деревянными каркасами с заполнителями из самана или глины и легкими перекрытиями:

  • 1) Б1 - типовые здания. Здания из жженого кирпича, тесаного камня или бетонных блоков на известковом, цементном или сложном растворе; деревянные щитовые дома;
  • 2) Б2 - сооружения из жженого кирпича, тесаного камня или бетонных блоков на известковом, цементном или сложном растворе: сплошные ограды и стенки, трансформаторные киоски, силосные и водонапорные башни.

В - местные здания. Деревянные дома, рубленные в «лапу» или в «обло»:

  • 1) В1 - типовые здания. Железобетонные, каркасные крупнопанельные и армированные крупноблочные дома;
  • 2) В2 - сооружения. Железобетонные сооружения: силосные и водонапорные башни, маяки, подпорные стенки, бассейны и т. п.

Здания и типовые сооружения с антисейсмическими мероприятиями разделяются на типы:

  • 1) С 7 - типовые здания и сооружения всех видов (кирпичные, блочные, панельные, бетонные, деревянные, щитовые и др.) с антисейсмическими мероприятиями для расчетной сейсмичности 7 баллов;
  • 2) С8 - типовые здания и сооружения всех видов с антисейсмическими мероприятиями для расчетной сейсмичности 8 баллов;
  • 3) С9 - типовые здания и сооружения всех видов с антисейсмическими мероприятиями для расчетной сейсмичности 9 баллов.

При сочетании в одном здании двух или трех типов здание в целом следует относить к слабейшему из них.

При землетрясениях принято рассматривать пять степеней разрушения зданий. В международной модифицированной сейсмической шкале MMSK-86 предлагается следующая классификация степеней разрушения зданий:

  • 1) d = 1 - слабые повреждения. Слабые повреждения материала и неконструктивных элементов здания: тонкие трещины в штукатурке; откалывание небольших кусков штукатурки; тонкие трещины в сопряжениях перекрытий со стенами и стенового заполнения с элементами каркаса, между панелями, в разделке печей и дверных коробок; тонкие трещины в перегородках, карнизах, фронтонах, трубах. Видимые повреждения конструктивных элементов отсутствуют. Для ликвидации повреждений достаточно текущего ремонта зданий;
  • 2) d = 2 - умеренные повреждения. Значительные повреждения материала и неконструктивных элементов здания, падение пластов штукатурки, сквозные трещины в перегородках, глубокие трещины в карнизах и фронтонах, выпадение кирпичей из дымовых труб, падение отдельных черепиц. Слабые повреждения несущих конструкций: тонкие трещины в несущих стенах; незначительные деформации и небольшие отколы бетона или раствора в узлах каркаса и стыках панелей. Для ликвидации повреждений необходим капитальный ремонт зданий;
  • 3) d = 3 - тяжелые повреждения. Разрушения неконструктивных элементов здания: обвалы частей перегородок, карнизов, фронтонов, дымовых труб; значительные повреждения несущих конструкций: сквозные трещины в несущих стенах; значительные деформации каркаса; заметные сдвиги панелей; выкрашивание бетона в узлах каркаса. Возможен восстановительный ремонт здания;
  • 4) d = 4 - частичные разрушения несущих конструкций: проломы и вывалы в несущих стенах; развалы стыков и узлов каркаса; нарушение связей между частями здания; обрушение отдельных панелей перекрытия; обрушение крупных частей здания. Здание подлежит сносу;
  • 5) d = 5 - обвалы. Обрушение несущих стен и перекрытия, полное обрушение здания с потерей его формы.

Анализируя последствия землетрясений, можно выделить следующие основные повреждения, которые получили здания различной конструктивной схемы, если сейсмические воздействия превосходили расчетные.

В каркасных зданиях преимущественно разрушаются узлы каркаса вследствие возникновения в этих местах значительных изгибающих моментов и поперечных сил. Особенно сильные повреждение получают основания стоек и узлы соединения ригелей со стойками каркаса (рис. 16а).

В крупнопанельных и крупноблочных зданиях наиболее часто разрушаются стыковые соединения панелей и блоков между собой и с перекрытиями. При этом наблюдается взаимное смещение панелей, раскрытие вертикальных стыков, отклонение панелей от первоначального положения, а в некоторых случаях обрушение панелей (рис. 160).

Для зданий с несущими стенами из местных материалов (сырцовый кирпич, глиносаманные блоки, туфовые блоки и др.) характерны следующие повреждения: появление трещин в стенах (рис. 17); обрушение торцовых стен; сдвиг, а иногда и обрушение перекрытий; обрушение отдельно стоящих стоек и особенно печей и дымовых труб.

Разрушение зданий в полной мере характеризуют законы разрушения. Под законами разрушения здания по-


Разрушение каркасного здания при землетрясении в Китае (а) и разрушение панельных зданий при землетрясении в Румынии (б) нимается зависимость между вероятностью его повреждения и интенсивностью проявления землетрясения в баллах. Законы разрушения зданий получены на основе анализа статистических материалов по разрушению жилых, общественных и промышленных зданий от воздействия землетрясений разной интенсивности.

Характерные повреждения кирпичных простенков при сейсмическом воздействии

Для построения кривой, аппроксимирующей вероятности наступления не менее определенной степени повреждения зданий, используется нормальный закон распределения повреждений. При этом учитывается, что для одного и того же здания может рассматриваться не одна, а пять степеней разрушения, т.е. после разрушения наступает одно из пяти несовместимых событий. Значения математического ожидания М мо интенсивности землетрясения в баллах, вызывающего не менее определенных степеней разрушения зданий, приведены в таблице 1.

Таблица 1

Математические ожидания М мо законов разрушения зданий

Классы зданий по MMSK-86

Степени разрушения зданий

Легкая d = 1

Умеренная d = 2

Частичное разрушение d = 4

Математические ожидания М законов разрушения

Использование данных таблицы 1 позволяет прогнозировать вероятность повреждения зданий различных классов при заданной интенсивности землетрясения.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФГБОУ ВПО "БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ"

ИНСТИТУТ УПРАВЛЕНИЯ И БЕЗОПАСНОСТИ ПРЕДПРИНИМАТЕЛЬСТВА

Кафедра экономики, управления и финансов

КОНТРОЛЬНАЯ РАБОТА

По предмету: Техническое обслуживание зданий и сооружений

Тема: Виды воздействия на здания и сооружения

Выполнила: студентка группы ЭУКЗО-01-09

Шагимарданова Л.М.

Проверил: Федотов Ю.Д.

Введение

Классификация нагрузок

Сочетания нагрузок

Заключение

Введение

При возведении зданий и сооружений вблизи или вплотную к уже существующим возникают дополнительные деформации ранее построенных зданий и сооружений.

Опыт показывает, пренебрежение особыми условиями такого строительства может приводить к появлению в стенах ранее построенных зданий трещин, перекосов проемов и лестничных маршей, к сдвигу плит перекрытий, разрушению строительных конструкций, т.е. к нарушению нормальной эксплуатации зданий, а иногда даже к авариям.

При намечаемом новом строительстве на застроенной территории заказчиком и генеральным проектировщиком, с привлечением заинтересованных организаций, эксплуатирующих окружающие здания, должен быть решен вопрос об обследовании этих зданий в зоне влияния нового строительства.

Рядом расположенным зданием считается существующее здание, находящееся в зоне влияния осадок фундаментов нового здания или в зоне влияния производства работ по строительству нового здания на деформации основания и конструкций существующего. Зона влияния определяется в процессе проектирования.

Классификация нагрузок

В зависимости от продолжительности действия нагрузок следует различать постоянные и временные (длительные, кратковременные, особые) нагрузки. Нагрузки, возникающие при изготовлении, хранении и перевозке конструкций, а также при возведении сооружений, следует учитывать в расчетах как кратковременные нагрузки.

а) вес частей сооружений, в том числе вес несущих и ограждающих строительных конструкций;

б) вес и давление грунтов (насыпей, засыпок), горное давление.

Сохраняющиеся в конструкции или основании усилия от предварительного напряжения следует учитывать в расчетах как усилия от постоянных нагрузок.

а) вес временных перегородок, подливок и подбетонок под оборудование;

б) вес стационарного оборудования: станков, аппаратов, моторов, емкостей, трубопроводов с арматурой, опорными частями и изоляцией, ленточных конвейеров, постоянных подъемных машин с их канатами и направляющими, а также вес жидкостей и твердых тел, заполняющих оборудование;

в) давление газов, жидкостей и сыпучих тел в емкостях и трубопроводах, избыточное давление и разрежение воздуха, возникающее при вентиляции шахт;

г) нагрузки на перекрытия от складируемых материалов и стеллажного оборудования в складских помещениях, холодильниках, зернохранилищах, книгохранилищах, архивах и подобных помещениях;

д) температурные технологические воздействия от стационарного оборудования;

е) вес слоя воды на водонаполненных плоских покрытиях;

ж) вес отложений производственной пыли, если ее накопление не исключено соответствующими мероприятиями;

з) нагрузки от людей, животных, оборудования на перекрытия жилых, общественных и сельскохозяйственных зданий с пониженными нормативными значениями.

и) вертикальные нагрузки от мостовых и подвесных кранов с пониженным нормативным значением, определяемым умножением полного нормативного значения вертикальной нагрузки от одного крана в каждом пролете здания на коэффициент: 0,5 - для групп режимов работы кранов 4К-6К; 0,6 - для группы режима работы кранов 7К; 0,7 - для группы режима работы кранов 8К. Группы режимов работы кранов принимаются по ГОСТ 25546-82;

к) снеговые нагрузки с пониженным расчетным значением, определяемым умножением полного расчетного значения на коэффициент 0,5.

л) температурные климатические воздействия с пониженными нормативными значениями, определяемыми в соответствии с указаниями пп. 8.2-8.6 при условии q1 = q2 = q3 = q4 = q5 = 0, DI = DVII = 0;

м) воздействия, обусловленные деформациями основания, не сопровождающимися коренным изменением структуры грунта, а также оттаиванием вечномерзлых грунтов;

н) воздействия, обусловленные изменением влажности, усадкой и ползучестью материалов.

В районах со средней температурой января минус 5°С и выше (по карте 5 приложения 5 к СниП 2.01.07-85*) снеговые нагрузки с пониженным расчетным значением не устанавливаются.

а) нагрузки от оборудования, возникающие в пускоостановочном, переходном и испытательном режимах, а также при его перестановке или замене;

б) вес людей, ремонтных материалов в зонах обслуживания и ремонта оборудования;

в) нагрузки от людей, животных, оборудования на перекрытия жилых, общественных и сельскохозяйственных зданий с полными нормативными значениями, кроме нагрузок, указанных в п.1.7, а, б, г, д;

г) нагрузки от подвижного подъемно-транспортного оборудования (погрузчиков, электрокаров, кранов-штабелеров, тельферов, а также от мостовых и подвесных кранов с полным нормативным значением);

д) снеговые нагрузки с полным расчетным значением;

е) температурные климатические воздействия с полным нормативным значением;

ж) ветровые нагрузки;

з) гололедные нагрузки.

а) сейсмические воздействия;

б) взрывные воздействия;

в) нагрузки, вызываемые резкими нарушениями технологического процесса, временной неисправностью или поломкой оборудования;

г) воздействия, обусловленные деформациями основания, сопровождающимися коренным изменением структуры грунта (при замачивании просадочных грунтов) или оседанием его в районах горных выработок и в карстовых.

Сочетания нагрузок

Расчет конструкций и оснований по предельным состояниям первой и второй групп следует выполнять с учетом неблагоприятных сочетаний нагрузок или соответствующих им усилий.

Эти сочетания устанавливаются из анализа реальных вариантов одновременного действия различных нагрузок для рассматриваемой стадии работы конструкции или основания.

В зависимости от учитываемого состава нагрузок следует различать:

а) основные сочетания нагрузок, состоящие из постоянных, длительных и кратковременных,

б) особые сочетания нагрузок, состоящие из постоянных, длительных, кратковременных и одной из особых нагрузок.

Временные нагрузки с двумя нормативными значениями следует включать в сочетания как длительные - при учете пониженного нормативного значения, как кратковременные - при учете полного нормативного значения.

В особых сочетаниях нагрузок, включающих взрывные воздействия или нагрузки, вызываемые столкновением транспортных средств с частями сооружений, допускается не учитывать кратковременные нагрузки, указанные в п.1.8.

При учете сочетаний, включающих постоянные и не менее двух временных нагрузок, расчетные значения временных нагрузок или соответствующих им усилий следует умножать на коэффициенты сочетаний, равные:

в основных сочетаниях для длительных нагрузок y1 = 0,95; для кратковременных y2 = 0,9:

в особых сочетаниях для длительных нагрузок y1 = 0,95; для кратковременных y2 = 0,8, кроме случаев, оговоренных в нормах проектирования сооружений для сейсмических районов и в других нормах проектирования конструкций и оснований. При этом особую нагрузку следует принимать без снижения.

В основных сочетаниях при учете трех и более кратковременных нагрузок их расчетные значения допускается умножать на коэффициент сочетания y2, принимаемый для первой (по степени влияния) кратковременной нагрузки - 1,0, для второй - 0,8, для остальных - 0,6.

При учете сочетаний нагрузок за одну временную нагрузку следует принимать:

а) нагрузку определенного рода от одного источника (давление или разрежение в емкости, снеговую, ветровую, гололедную нагрузки, температурные климатические воздействия, нагрузку от одного погрузчика, электрокара, мостового или подвесного крана);

б) нагрузку от нескольких источников, если их совместное действие учтено в нормативном и расчетном значениях нагрузки (нагрузку от оборудования, людей и складируемых материалов на одном или несколько перекрытий с учетом коэффициентов yA и yn; нагрузку от нескольких мостовых или подвесных кранов с учетом коэффициента y; гололедно-ветровую нагрузку

Методы борьбы с воздействиями на здания и сооружения

При проектировании инженерной защиты от оползневых и обвальных процессов следует рассматривать целесообразность применения следующих мероприятий и сооружений, направленных на предотвращение и стабилизацию этих процессов:

изменение рельефа склона в целях повышения его устойчивости;

регулирование стока поверхностных вод с помощью вертикальной планировки территории, устройства системы поверхностного водоотвода, предотвращение инфильтрации воды в грунт и эрозионных процессов;

искусственное понижение уровня подземных вод;

агролесомелиорация;

закрепление грунтов;

удерживающие сооружения;

Удерживающие сооружения следует предусматривать для предотвращения сдвига, обрушения, обвалов и вывалов грунтов при невозможности или экономической нецелесообразности изменения рельефа склона (откоса).

Удерживающие сооружения применяют следующих видов:

поддерживающие стены - для укрепления нависающих скальных карнизов;

контрфорсы - отдельные опоры, врезанные в устойчивые слои грунта, для подпирания отдельных скальных массивов;

опояски - массивные сооружения для поддержания неустойчивых откосов;

облицовочные стены - для предохранения грунтов от выветривания и осыпания;

пломбы (заделка пустот, образовавшихся в результате вывалов на склонах) - для предохранения скальных грунтов от выветривания и дальнейших разрушений;

анкерные крепления - в качестве самостоятельного удерживающего сооружения (с опорными плитами, балками и т.д.) в виде крепления отдельных скальных блоков к прочному массиву на скальных склонах (откосах).

Снегоудерживающие сооружения следует размещать в зоне зарождения лавины непрерывными или секционными рядами до боковых границ лавиносбора. Верхний ряд сооружений следует устанавливать на расстоянии не более 15 м вниз по склону от наиболее высокого положения линии отрыва лавин (или от линии снеговыдувающих заборов или кольктафелей). Ряды снегоудерживающих сооружений следует располагать перпендикулярно направлению сползания снегового покрова.

Лавинотормозящие сооружения следует проектировать для уменьшения или полного гашения скорости лавин на конусах выноса в зоне отложения лавин, где крутизна склона менее 23°. В отдельных случаях, когда защищаемый объект оказывается в зоне зарождения лавин и лавина имеет небольшой путь разгона, возможно расположение лавинотормозящих сооружений на склонах крутизной более 23°.

Заключение

Для выбора оптимального варианта инженерной защиты технические и технологические решения и мероприятия должны быть обоснованы и содержать оценки экономического, социального и экологического эффектов при осуществлении варианта или отказе от него.

Обоснованию и оценке подлежат варианты технических решений и мероприятий, их очередность, сроки осуществления, а также регламенты обслуживания создаваемых систем и защитных комплексов.

Расчеты, связанные с соответствующими обоснованиями, должны основываться на исходных материалах одинаковой точности, детальности и достоверности, на единой нормативной базе, одинаковой степени проработки вариантов, идентичном круге учитываемых затрат и результатов. Сравнение вариантов при различии в результатах их осуществления должно учитывать затраты, необходимые для приведения вариантов к сопоставимому виду.

При определении экономического эффекта инженерной защиты в размер ущерба должны быть включены потери от воздействия опасных геологических процессов и затраты на компенсацию последствий от этих воздействий. Потери для отдельных объектов определяются по стоимости основных фондов в среднегодовом исчислении, а для территорий - на основе удельных потерь и площади угрожаемой территории, с учетом длительности периода биологического восстановления и срока осуществления инженерной защиты.

Предотвращенный ущерб должен быть суммирован по всем территориям и сооружениям независимо от границ административно-территориального деления.

Список использованной литературы

1.В.П. Ананьев, А.Д. Потапов Инежнерная геология. М: Высш. Шк. 2010

2.С.Б. Ухов, В.В. Семенов, С.Н. Чернышев Механика грунтов, основания, фундаменты. М: Выс. Шк. 2009 г.

.В.И. Темченко, А. А Лапидус, О.Н. Терентьев Технология строительных процессов М: Выс. Шк. 2008 г.

.В.И. Теличенко, А.А. Лапидус, О.М. Терентьев, В.В. Соколовский Технология возведения зданий и сооружений М: Выс. Шк. 2010 г.

.СНиП 2.01.15-90 Инженерная защита территорий, зданий и сооружений от опасных геологических грузов.