Низкотемпературной коррозии подвергаются поверхности нагрева трубчатых и регенеративных воздухоподогревателей, низкотемпературных экономайзеров, а также металлические газоходы и дымовые трубы при температурах металла ниже точки росы дымовых газов. Источником низкотемпературной коррозии является серный ангидрид SO 3 , образующий в дымовых газах пары серной кислоты, которая конденсируется при температурах точки росы дымовых газов. Нескольких тысячных долей процента SO 3 в газах достаточно для того, чтобы вызвать коррозию металла со скоростью, превышающей 1 мм/год. Низкотемпературная коррозия замедляется при организации топочного процесса с малыми избытками воздуха, а также при применении присадок к топливу и повышении коррозионной стойкости металла.

Высокотемпературной коррозии подвергаются топочные экраны барабанных и прямоточных котлов при сжигании твердого топлива, пароперегреватели и их крепления, а также экраны нижней радиационной части котлов сверхкритического давления при сжигании сернистого мазута.

Коррозия внутренней поверхности труб является следствием взаимодействия с металлом труб газов кислорода и углекислоты) или солей (хлоридов и сульфатов), содержащихся в котловой воде. В современных котлах сверхкритического давления пара содержание газов и коррозионноактивных солей в результате глубокого обессоливания питательной воды и термической деаэрации незначительно и основной причиной коррозии является взаимодействие металла с водой и паром. Коррозия внутренней поверхности труб проявляется в образовании оспин, язвин, раковин и трещин; наружная поверхность поврежденных труб может ничем не отличаться от здоровых.

К повреждениям в результате внутренней коррозии труб также относятся:
кислородная стояночная коррозия, поражающая любые участки внутренней поверхности труб. Наиболее интенсивно поражаются участки, покрытые водорастворимыми отложениями (трубы пароперегревателей и переходной зоны прямоточных котлов);
подшламовая щелочная коррозия кипятильных и экранных труб, возникающая под действием концентрированной щелочи вследствие упаривания воды под слоем шлама;
коррозионная усталость, проявляющаяся в виде трещин в кипятильных и экранных трубах в результате одновременного воздействия коррозионной среды и переменных термических напряжений.

Окалина образуется на трубах вследствие перегрева их до температур, значительно превышающих расчетные. В связи с ростом производительности котлоагрегатов в последнее время участились случаи выхода из строя труб пароперегревателей из-за недостаточной окалиностойкости к топочным газам. Интенсивное окалинообразование наиболее часто наблюдается при сжигании мазута.

Износ стенок труб происходит в результате истирающего действия угольной и сланцевой пыли и золы, а также струй пара, выходящих из поврежденных соседних труб или сопел обдувочных аппаратов. Иногда причиной износа и наклепа стенок труб служит дробь, применяемая для очистки поверхностей нагрева. Места и степень износа труб определяют наружным осмотром и измерением их диаметра. Фактическую толщину стенки трубы измеряют ультразвуковым толщиномером.

Коробление экранных и кипятильных труб, а также отдельных труб и участков настенных панелей радиационной части прямоточных котлов возникает при установке труб с неравномерным натягом, обрыве креплений труб, упуске воды и из-за отсутствия свободы для их тепловых перемещений. Коробление змеевиков и ширм пароперегревателя происходит главным образом вследствие обгорания подвесок и креплений, чрезмерного и неравномерного натяга, допущенного при установке или замене отдельных элементов. Коробление змеевиков водяного экономайзера происходит вследствие перегорания и смещения опор и подвесок.

Свищи, отдулины, трещины и разрывы могут появиться также в результате: отложения в трубах накипи, продуктов коррозии, технологической окалины, сварочного грата и других посторонних предметов, замедляющих циркуляцию воды и способствующих перегреву металла труб; наклепа дробью; несоответствия марки стали параметрам пара и температуре газов; внешних механических повреждений; нарушения режимов эксплуатации.

Условия, в которых находятся элементы паровых котлов во время эксплуатации, чрезвычайно разнообразны.

Как показали многочисленные коррозионные испытания и промышленные наблюдения, низколегированные и даже аустенитные стали при эксплуатации котлов могут подвер­гаться интенсивной коррозии.

Коррозия металла поверхностей нагрева паровых кот­лов вызывает его преждевременный износ, а иногда приво­дит к серьезным неполадкам и авариям.

Большинство аварийных остановов котлов приходится на сквозные коррозионные поражения экранных, экономай - зерных, пароперегревательных труб и барабанов котлов. Появление даже одного коррозионного свища у прямоточ­ного котла приводит к останову всего блока, что связано с недовыработкой электроэнергии. Коррозия барабанных котлов высокого и сверхвысокого давления стала основной причиной отказов в работе ТЭЦ. 90 % отказов в работе из-за коррозионных повреждений произошло на барабанных котлах давлением 15,5 МПа. Значительное количество кор­розионных повреждений экранных труб солевых отсеков было в"зонах максимальных тепловых нагрузок.

Проведенными специалистами США обследованиями 238 котлов (блоки мощностью от 50 до 600 МВт) было зафиксировано 1719 вне­плановых простоев. Около 2/3 простоев котлов были вызваны коррози­ей, из них 20 % приходилось на коррозию парогенерирующих труб. В США внутренняя коррозия"в 1955 г. была признана серьезной проб­лемой после ввода в эксплуатацию большого числа барабанных котлов давлением 12,5-17 МПа.

К концу 1970 г. около 20 % из 610 таких котлов были поражены коррозией. В основном внутренней коррозии были подвержены экран­ные трубы, а пароперегреватели и экономайзеры поражались ею мень­ше. С улучшением качества питательной воды и переходом на режим координированного фосфатироваиия, с ростом параметров на барабан­ных котлах электростанций США вместо вязких, пластических корро­зионных повреждений происходили внезапные хрупкие разрушения экранных труб. "По состоянию на J970 т. для котлрв давлением 12,5; 14,8 и 17 МПа разрушение труб из-за коррозионных повреждений со­ставило соответственно 30, 33 и 65 % .

По условиям протекания коррозионного процесса раз­личают атмосферную коррозию, протекающую под дейст­вием атмосферных, а также влажных газов; газовую, обу­словленную взаимодействием металла с различными газа­ми - кислородом, хлором и т. д. - при высоких температу­рах, и коррозию в электролитах, в большинстве случаев протекающую в водных растворах.

По характеру коррозионных процессов котельный ме­талл может подвергаться химической и электрохимической коррозии, а также их совместному воздействию.


При эксплуатации поверхностей нагрева паровых кот­лов встречается высокотемпературная газовая коррозия в окислительной и восстановительной атмосферах топоч­ных газов и низкотемпературная электрохимическая кор­розия хвостовых поверхностей нагрева.

Исследованиями установлено, что высокотемператур­ная коррозия поверхностей нагрева наиболее интенсивно протекает лишь при наличии в топочных газах избыточного свободного кислорода и в присутствии расплавленных ок­сидов ванадия.

Высокотемпературная газовая или сульфидная корро­зия в окислительной атмосфере топочных газов поражает трубы ширмовых и конвективных перегревателей, первые ряды кипятильных пучков, металл дистанционирующих проставок между трубами, стойки и подвески.

Высокотемпературная газовая коррозия в восстановит тельной атмосфере наблюдалась на экранных трубах то­почных камер ряда котлов высокого и сверхкритического давления.

Коррозия труб поверхностей нагрева с газовой стороны представляет сложный физико-химический процесс взаимо­действия топочных газов и наружных отложений с окисны - ми пленками и металлом труб. На развитие этого процесса оказывают влияние изменяющиеся во времени интенсивные тепловые потоки и высокие механические напряжения, возникающие от внутреннего давления и самокомпенсации.

На котлах среднего и низкого давления " температура стенки экранов, определяемая температурой кипения воды, ниже, и поэтому этот вид разрушения металла не наблюда­ется.

Коррозия поверхностей нагрева со стороны дымовых газов (внешняя коррозия) есть процесс разрушения метал­ла в результате взаимодействия с продуктами сгорания, агрессивными газами, растворами и расплавами минераль­ных соединений.

Под коррозией металла понимают постепенное разру­шение металла, происходящее вследствие химического или электрохимического воздействия внешней среды.

\ Процессы разрушения металла, являющиеся следствием их непосредственного химического взаимодействия с окру­жающей средой, относятся к химической коррозии.

Химическая коррозия происходит при контакте металла с перегретым паром и сухими газами. Химическую корро­зию в сухих газах называют газовой коррозией.

В топке и газоходах котла газовая коррозия наружной поверхности труб и стоек пароперегревателей происходит под воздействием кислорода, углекислого газа, водяных паров, сернистого и других газов; внутренней поверхности труб - в результате взаимодействия с паром или водой.

Электрохимическая коррозия в отличие от химической характеризуется тем, что протекающие при ней реакции сопровождаются возникновением электрического тока.

Переносчиком электричества в растворах служат ионы, присутствующие в них из-за диссоциации молекул, а в ме­таллах - свободные электроны:

Внутрикотловая поверхность подвержена в основном электрохимической коррозии. По современным представле­ниям ее проявление обусловлено двумя самостоятельными процессами: анодным, при котором ионы металла перехо­дят в раствор в виде гидратироваиных ионов, и катодным, при котором происходит ассимиляция избыточных электро­нов деполяризаторами. Деполяризаторами могут быть ато­мы, ионы, молекулы, которые при этом восстанавливаются.

По внешним признакам различают сплошную (общую) и местную (локальную) формы коррозионных разрушений.

При общей коррозии вся соприкасающаяся поверхность нагрева с агрессивной средой подвергается разъеданию, равномерно утоняясь с внутренней или наружной стороны. При локальной коррозии разрушение происходит на от­дельных участках поверхности, остальная поверхность ме­талла не затрагивается повреждениями.

К местной локальной относят коррозию пятнами, язвен­ную, точечную, межкристаллитную, коррозионное растрес­кивание, коррозионную усталость металла.

Типичный пример разрушения от электрохимической коррозии.

Разрушение с наружной поверхности труб НРЧ 042X5 мм из ста­ли 12Х1МФ котлов ТПП-110 произошло на горизонтальном участке в нижней части подъемно-опускной петли в зоне, примыкающей к подо­вому экрану. На тыльной стороне трубы произошло раскрытие с ма­лым утонением кромок в месте разрушения. Причиной разрушения явилось утонение стенки трубы примерно на 2 мм при коррозии из-за расшлаковки струей воды. После останова котла паропроизводитель - ностью 950 т/ч, отапливаемого пылью антрацитного штыба (жидкое шлакоудаление), давлением 25,5 МПа и температурой перегретого пара 540 °С на трубах оставались мокрый шлак и зола, в которых интенсив­но протекала электрохимическая коррозия. Снаружи труба была по­крыта толстым слоем бурой гидроокиси железа Внутренний диаметр труб находился в пределах допусков на трубы котлов высокого и сверх­высокого давления. Размеры по наружному диаметру имеют отклоне­ния, выходящие за пределы минусового допуска: минимальный наруж­ный диаметр. составил 39 мм при минимально допустимом 41,7 мм. Толщина стенки вблизи места разрушения от коррозии составляла все­го 3,1 мм при номинальной толщине трубы 5 мм.

Микроструктура металла однородна по длине и окружности. На внутренней поверхности трубы имеется обезуглераженный слой, обра­зовавшийся при окислении трубы в процессе термической обработки. На наружной стороне такой слой отсутствует.

Обследования труб НРЧ после первого разрыва позволило выяс­нить причину разрушения. Было принято решение о замене НРЧ и об изменении технологии расшлаковки. В данном случае электрохимиче­ская коррозия протекала из-за наличия тонкой пленки электролита.

Язвенная коррозия протекает интенсивно на отдельных небольших участках поверхности, но часто на значитель­ную глубину. При диаметре язвин порядка 0,2-1 мм ее называют точечной.

В местах, где образуются язвины, со временем могут образоваться свищи. Язвины часто заполняются продукта­ми коррозии, вследствие чего не всегда их удается обнару­жить. Примером может служить разрушение труб стально­го экономайзера при плохой деаэрации питательной воды и низких скоростях движения воды в трубах.

Несмотря на то что поражена значительная часть ме­талла труб, из-за сквозных свищей приходится полностью заменять змеевики экономайзера.

Металл паровых котлов подвергается следующим опас­ным видам коррозии: кислородной коррозии во время ра­боты котлов и нахождения их в ремонте; межкристаллит - ной коррозии в местах упаривания котловой воды; парово­дяной коррозии; коррозионному растрескиванию элементов котлов, изготовленных из аустенитных сталей; подшламо - вой коррозии. Краткая характеристика указанных видов коррозии металла котлов приведена в табл. ЮЛ.

В процессе работы котлов различают коррозию метал­ла - коррозию под нагрузкой и стояночную коррозию.

Коррозии под нагрузкой наиболее подвержены обогре-. ваемые котельные элементы, контактирующие с двухфаз­ной средой, т. е. экранные и кипятильные трубы. Внутрен­няя поверхность экономайзеров и перегревателей при работе котлов поражается коррозией меньше. Коррозия под нагрузкой протекает и в обескислороженной среде.

Стояночная коррозия проявляется в недренируемых. элементах вертикальных змеевиков перегревателей, провис­ших трубах горизонтальных змеевиков перегревателей

В судовых паровых котлах коррозия может протекать как со стороны пароводяного контура, так и со стороны продуктов сгорания топлива.

Внутренние поверхности пароводяного контура могут подвергаться следующим видам коррозии;

Кислородная коррозия - является наиболее опасным видом коррозии. Характерной особенностью кислородной коррозии является образование местных точечных очагов коррозии, доходящих до глубоких язвин и сквозных дыр; Наиболее подвержены кислородной коррозии входные участки экономайзеров, коллекторы и опускные трубы циркуляционных контуров.

Нитритная коррозия - в отличие от кислородной поражает внутренние поверхности теплонапряженных подъемных трубок и вызывает образование более глубоких язвин диаметром 15 ^ 20 мм.

Межкристаллитная коррозия является особым видом коррозии и возникает в местах наибольших напряжений металла (сварные швы, вальцовочные и фланцевые соединения) в результате взаимодействия котельного металла с высококонцентрированной щелочью. Характерной особенностью является появление на поверхности металла сетки из мелких трещин, постепенно развивающихся в сквозные трещины;

Подшламоеая коррозия возникает в местах отложения шлама и в застойных зонах циркуляционных контуров котлов. Процесс протекания носит электрохимический характер при контакте окислов железа с металлом.

Со стороны продуктов сгорания топлива могут наблюдаться следующие виды коррозии;

Газовая коррозия поражает испарительные, перегревательные и экономайзерные поверхности нагрева, обшивку кожуха,

Газонаправляющие щиты и другие элементы котла, подвергающиеся воздействию высоких температур газов.. При повышении температуры металла котельных труб свыше 530 0С (для углеродистой стали) начинается разрушение защитной оксидной пленки на поверхности труб, обеспечивая беспрепятственный доступ кислорода к чистому металлу. При этом на поверхности труб происходит коррозия с образованием окалины.

Непосредственной причиной этого вида коррозии является нарушение режима охлаждения указанных элементов и повышение их температуры выше допустимой. Для труб поверхностей нагрева причинами повЫш Ения температуры стенок могут быть; образование значительного слоя накипи, нарушения режима циркуляции (застой, опрокидывание, образование паровых пробок), упуск воды из котла, неравномерность раздачи воды и отбора пара по длине парового коллектора.

Высокотемпературная (ванадиевая) коррозия поражает поверхности нагрева пароперегревателей, расположенные в зоне высоких температур газов. При сжигании топлива происходит образование окислов ванадия. При этом при недостатке кислорода образуется трехокись ванадия, а при его избытке - пятиокись ванадия. Коррозионно-опасной является пятиокись ванадия У205, имеющая температуру плавления 675 0С. Пятиокись ванадия, выделяющаяся при сжигании мазутов, налипает на поверхности нагрева, имеющие высокую температуру, и вызывает активное разрушение металла. Опыты показали, что даже такие содержания ванадия, как 0,005 % по весовому составу могут вызвать опасную коррозию.

Ванадиевую коррозию можно предотвратить снижением допустимой температуры металла элементов котла и организацией горения с минимальными коэффициентами избытка воздуха а = 1,03 + 1,04.

Низкотемпературная (кислотная) коррозия поражает в основном хвостовые поверхности нагрева. В продуктах сгорания сернистых мазутов всегда присутствуют пары воды и соединения серы, образующие при соединении друг с другом серную кислоту. При омывании газами относительно холодных хвостовых поверхностей нагрева пары серной кислоты конденсируется на них и вызывают коррозию металла. Интенсивность низкотемпературной коррозии зависит от концентрации серной кислоты в пленке влаги, оседающей на поверхностях нагрева. При этом концентрация Б03 в продуктах сгорания определяется не только содержанием серы в топливе. Основными факторами, влияющими на скорость протекания низкотемпературной коррозии, являются;

Условия протекания реакции горения в топке. При повышении коэффициента избытка воздуха увеличивается процентное содержание газа Б03 (при а = 1,15 окисляется 3,6 % серы, содержащейся в топливе; при а = 1,7 окисляется около 7 % серы). При коэффициентах избытка воздуха а = 1,03 - 1,04 серного ангидрида Б03 практически не образуется;

Состояние поверхностей нагрева;

Питание котла слишком холодной водой, вызывающей понижение температуры стенок труб экономайзера ниже тоски росы для серной кислоты;

Концентрация воды в топливе; при сжигании обводненных топлив точка росы повышается вследствие повышения парциального давления водяных паров в продуктах сгорания.

Стояночная коррозия поражает внешние поверхности труб и коллекторов, обшивку, топочные устройства, арматуру и другие элементы газовоздушного тракта котла. Сажа, образующаяся при сжигании топлива, покрывает поверхности нагрева и внутренние части газовоздушного тракта котла. Сажа гигроскопична, и при остывании котла легко впитывает влагу, вызывающую коррозию. Коррозия носит язвенный характер при образовании на поверхности металла пленки раствора серной кислоты при остывании котла и снижении температуры его элементов ниже точки росы для серной кислоты.

Борьба со стояночной коррозией основана на создании условий, исключающих попадание влаги на поверхности котельного металла, а также нанесением антикоррозионных покрытий на поверхности элементов котлов.

При кратковременном бездействии котлов после осмотра и чистки поверхностей нагрева с целью предотвращения попадания атмосферных осадков в газоходы котлов на дымовую трубу необходимо одевать чехол, закрывать воздушные регистры, смотровые отверстия. Необходимо постоянно контролировать влажность и температуру в МКО.

Для предотвращения коррозии котлов во время бездействия используются различные способы хранения котлов. Различают два способа хранения; мокрое и сухое.

Основным способом хранения котлов является мокрое хранение. Оно предусматривает полное заполнение котла питательной водой, пропущенной через электроно-ионообменные и обескислораживающие фильтры, включая пароперегреватель и экономайзер. Держать котлы на мокром хранении можно не более 30 суток. В случае более длительного бездействия котлов применяется сухое хранение котла.

Сухое хранение предусматривает полное осушение котла от воды с размещением в коллекторах котла бязевых мешочков с селикагелем, поглощающим влагу. Периодически производится вскрытие коллекторов, контрольный замер массы селикагеля с целью определения массы поглощенной влаги, и выпаривание поглощенной влаги из селикагеля.


Коррозионные явления в котлах чаще всего проявляются на внутренней теплонапряженной поверхности и сравнительно реже - на наружной.

В последнем случае разрушение металла обусловлено - в большинстве случаев - совместным действием коррозии и эрозии, которая иногда имеет преобладающее значение.
Внешний признак эрозионного разрушения - чистая поверхность металла. При коррозионном же воздействии продукты коррозии обычно сохраняются на его поверхности.
Внутренние (в водной среде) коррозионные и накипные процессы могут усугублять наружную коррозию (в газовой среде) из-за теплового сопротивления слоя накипных и коррозионных отложений, и, следовательно, роста температуры на поверхности металла.
Наружная коррозия металла (со стороны топки котла) зависит от разных факторов, но, прежде всего, - от вида и состава сжигаемого топлива.

Коррозия газо-мазутных котлов
В мазуте содержатся органические соединения ванадия и натрия. Если на стенке трубы, обращенной в топку, накапливаются расплавленные отложения шлака, содержащего соединения ванадия (V), то при большом избытке воздуха и/или температуре поверхности металла 520-880 оС происходят реакции:
4Fe + 3V2O5 = 2Fe2O3 + 3V2O3 (1)
V2O3 + O2 = V2O5 (2)
Fe2O3 + V2O5 = 2FeVO4 (3)
7Fe + 8FeVO4 = 5Fe3О4 + 4V2O3 (4)
(Соединения натрия) + О2 = Na2O (5)
Возможен и другой механизм коррозии с участием ванадия (жидкая эвтектическая смесь):
2Na2O . V2O4 . 5V2O5 + O2 = 2Na2O . 6V2O5 (6)
Na2O . 6V2O5 + М = Na2O . V2O4 . 5V2O5 + MO (7)
(М - металл)
Соединения ванадия и натрия при сгорании топлива окисляются до V2O5 и Na2O. В отложениях, прилипающих к поверхности металла, Na2O - связующее. Жидкость, образующаяся в результате реакций (1)-(7), расплавляет защитную пленку магнетита (Fe3O4), что приводит к окислению металла под отложениями (температура расплавления отложений (шлака) - 590-880 оС).
В результате указанных процессов стенки экранных труб, обращенных к топке, равномерно утончаются.
Росту температуры металла, при которой соединения ванадия становятся жидкими, способствуют внутренние накипные отложения в трубах. И, таким образом, при достижении температуры предела текучести металла возникает разрыв трубы - следствие совместного действия внешних и внутренних отложений.
Корродируют и детали крепления трубных экранов, а также выступы сварных швов труб - рост температуры на их поверхности ускоряется: они не охлаждаются пароводяной смесью, как трубы.
Мазут может содержать серу (2,0-3,5 %) в виде органических соединений, элементарной серы, сульфата натрия (Na2SO4), попадающего в нефть из пластовых вод. На поверхности металла в таких условиях ванадиевая коррозия сопровождается сульфидно-оксидной. Их совместное действие в наибольшей степени проявляется, когда в отложениях присутствуют 87 % V2O5 и 13 % Na2SO4, что соответствует содержанию в мазуте ванадия и натрия в соотношении 13/1.
Зимой при разогреве мазута паром в емкостях (для облегчения слива) в него дополнительно попадает вода в количестве 0,5-5,0 %. Следствие: увеличивается количество отложений на низкотемпературных поверхностях котла, и, очевидно, растет коррозия мазутопроводов и мазутных емкостей.

Кроме описанной выше схемы разрушения экранных труб котлов, коррозия пароперегревателей, труб фестонов, кипятильных пучков, экономайзеров имеет некоторые особенности из-за повышенных - в некоторых сечениях - скоростей газов, особенно содержащих несгоревшие частицы мазута и отслоившиеся частицы шлака.

Идентификация коррозии
Наружная поверхность труб покрыта плотным эмалевидным слоем отложений серого и темно-серого цвета. На стороне, обращенной в топку, - утончение трубы: плоские участки и неглубокие трещинки в виде «рисок» хорошо видны, если очистить поверхность от отложений и оксидных пленок.
Если труба аварийно разрушена, то видна сквозная продольная неширокая трещина.

Коррозия пылеугольных котлов
В коррозии, образуемой действием продуктов сжигания углей, определяющее значение имеют сера и ее соединения. Кроме того, на течение коррозионных процессов влияют хлориды (в основном NaCl) и соединения щелочных металлов. Наиболее вероятна коррозия при содержании в угле более 3,5 % серы и 0,25 % хлора.
Летучая зола, содержащая щелочные соединения и оксиды серы, отлагается на поверхности металла при температуре 560-730 оС. При этом в результате происходящих реакций образуются щелочные сульфаты, например K3Fe(SO4)3 и Na3Fe(SO4)3. Этот расплавленный шлак, в свою очередь, разрушает (расплавляет) защитный оксидный слой на металле - магнетит (Fe3O4).
Скорость коррозии максимальна при температуре металла 680-730 оС, при ее увеличении скорость уменьшается из-за термического разложения коррозионных веществ.
Наибольшая коррозия - в выходных трубах пароперегревателя, где наиболее высокая температура пара.

Идентификация коррозии
На экранных трубах можно наблюдать плоские участки с обеих сторон трубы, подвергающихся коррозионному разрушению. Эти участки расположены под углом друг к другу 30-45 оС и покрыты слоем отложений. Между ними - сравнительно «чистый» участок, подвергающийся «лобовому» воздействию газового потока.
Отложения состоят из трех слоев: внешний - пористая летучая зола, промежуточный слой - белесые водорастворимые щелочные сульфаты, внутренний слой - блестящие черные оксиды железа (Fe3O4) и сульфиды (FeS).
На низкотемпературных частях котлов - экономайзер, воздухоподогреватель, вытяжной вентилятор - температура металла падает ниже «точки росы» серной кислоты.
При сжигании твердого топлива температура газов уменьшается от 1650 оС в факеле до 120 оС и менее в дымовой трубе.
Из-за охлаждения газов образуется серная кислота в паровой фазе, и при контакте с более холодной поверхностью металла пары конденсируются с образованием жидкой серной кислоты. «Точка росы» серной кислоты - 115-170 оС (может быть и больше - зависит от содержания в газовом потоке паров воды и оксида серы (SO3)).
Процесс описывается реакциями:
S + O2 = SO2 (8)
SO3 + H2O = H2SO4 (9)
H2SO4 + Fe = FeSO4 + H2 (10)
В присутствии оксидов железа и ванадия возможно каталитическое окисление SO3:
2SO2 + O2 = 2SO3 (11)
В некоторых случаях сернокислотная коррозия при сжигании каменного угля менее значима, чем при сжигании бурого, сланца, торфа и даже природного газа - из-за относительно большего выделения водяного пара из них.

Идентификация коррозии
Этот вид коррозии вызывает равномерное разрушение металла. Обычно поверхность шероховатая, с небольшим налетом ржавчины, и похожа на поверхность без коррозионных явлений. При длительном воздействии металл может быть покрыт отложениями продуктов коррозии, которые нужно осторожно снять при обследовании.

Коррозия во время перерывов в эксплуатации
Этот вид коррозии проявляется на экономайзере и в тех местах котла, где наружные поверхности покрыты соединениями серы. При остывании котла температура металла падает ниже «точки росы» и, как описано выше, если есть сернистые отложения, образуется серная кислота. Возможно промежуточное соединение - сернистая кислота (H2SO3), но она очень нестойкая и сразу превращается в серную кислоту.

Идентификация коррозии
Поверхности металла обычно покрыты нанесениями. Если их удалить, то обнаружатся участки разрушения металла, где были сернистые отложения и участки некорродированного металла. Такой внешний вид отличает коррозию на остановленном котле от вышеописанной коррозии металла экономайзера и других «холодных» частей работающего котла.
При обмывке котла коррозионные явления распределены более или менее равномерно по металлической поверхности из-за размывания сернистых отложений и недостаточной осушке поверхностей. При недостаточной обмывке коррозия локализована там, где были сернистые соединения.

Эрозия металла
Эрозийному разрушению металла при определенных условиях подвергаются разные системы котла как с внутренней, так и с наружной стороны обогреваемого металла, и там, где возникают турбулентные потоки с большой скоростью.
Ниже рассматривается только эрозия турбин.
Турбины подвергаются эрозии от ударов твердых частиц и капелек конденсата пара. Твердые частицы (оксиды) отслаиваются от внутренней поверхности пароперегревателей и паропроводов, особенно в условиях переходных тепловых процессов.

Капельки конденсата пара в основном разрушают поверхности лопаток последней ступени турбины и дренажные трубопроводы. Возможно эрозионно-коррозионное воздействие конденсата пара, если конденсат «кислый» - рН ниже пяти единиц. Коррозия также имеет опасный характер при наличии в водяных капельках пара хлоридов (до 12 % от массы отложений) и едкого натра.

Идентификация эрозии
Разрушение металла от ударов капель конденсата наиболее заметно на передних кромках лопаток турбин. Кромки покрыты тонкими поперечными зубцами и канавками (бороздками), могут быть наклонные конические выступы, направленные в сторону ударов. Выступы есть на передних кромках лопаток и почти отсутствуют на их задних плоскостях.
Повреждения от твердых частиц имеют вид разрывов, микровмятин и зазубрин на передних кромках лопаток. Бороздки и наклонные конусы отсутствуют.

МИНИСТЕРСТВО ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ СССР

ГЛАВНОЕ НАУЧНО-ТЕХНИЧЕСКОЕ УПРАВЛЕНИЕ ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ
ПО ПРЕДУПРЕЖДЕНИЮ
НИЗКОТЕМПЕРАТУРНОЙ
КОРРОЗИИ ПОВЕРХНОСТЕЙ
НАГРЕВА И ГАЗОХОДОВ КОТЛОВ

РД 34.26.105-84

СОЮЗТЕХЭНЕРГО

Москва 1986

РАЗРАБОТАНО Всесоюзным дважды ордена Трудового Красного Знамени теплотехническим научно-исследовательским институтом имени Ф.Э. Дзержинского

ИСПОЛНИТЕЛИ Р.А. ПЕТРОСЯН, И.И. НАДЫРОВ

УТВЕРЖДЕНО Главным техническим управлением по эксплуатации энергосистем 22.04.84 г.

Заместитель начальника Д.Я. ШАМАРАКОВ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ПРЕДУПРЕЖДЕНИЮ НИЗКОТЕМПЕРАТУРНОЙ КОРРОЗИИ ПОВЕРХНОСТЕЙ НАГРЕВА И ГАЗОХОДОВ КОТЛОВ

РД 34.26.105-84

Срок действия установлен
с 01.07.85 г.
до 01.07.2005 г.

Настоящие Методические указания распространяются на низкотемпературные поверхности нагрева паровых и водогрейных котлов (экономайзеры, газовые испарители, воздухоподогреватели различных типов и т.п.), а также на газовый тракт за воздухоподогревателями (газоходы, золоуловители, дымососы, дымовые трубы) и устанавливают методы защиты поверхностей нагрева от низкотемпературной коррозии.

Методические указания предназначены для тепловых электростанций, работающих на сернистых топливах, и организаций, проектирующих котельное оборудование.

1. Низкотемпературной коррозией называется коррозия хвостовых поверхностей нагрева, газоходов и дымовых труб котлов под действием конденсирующихся на них из дымовых газов паров серной кислоты.

2. Конденсация паров серной кислоты, объемное содержание которых в дымовых газах при сжигании сернистых топлив составляет лишь несколько тысячных долей процента, происходит при температурах, значительно (на 50 - 100 °С) превышающих температуру конденсации водяных паров.

4. Для предупреждения коррозии поверхностей нагрева в процессе эксплуатации температура их стенок должна превышать температуру точки росы дымовых газов при всех нагрузках котла.

Для поверхностей нагрева, охлаждаемых средой с высоким коэффициентом теплоотдачи (экономайзеры, газовые испарители и т.п.), температуры среды на входе в них должны превышать температуру точки росы примерно на 10 °С.

5. Для поверхностей нагрева водогрейных котлов при работе их на сернистом мазуте условия полного исключения низкотемпературной коррозии не могут быть реализованы. Для ее уменьшения необходимо обеспечить температуру воды на входе в котел, равную 105 - 110 °С. При использовании водогрейных котлов в качестве пиковых такой режим может быть обеспечен при полном использовании подогревателей сетевой воды. При использовании водогрейных котлов в основном режиме повышение температуры воды на входе в котел может быть достигнуто с помощью рециркуляции горячей воды.

В установках с применением схемы включения водогрейных котлов в теплосеть через водяные теплообменники условия снижения низкотемпературной коррозии поверхностей нагрева обеспечиваются в полной мере.

6. Для воздухоподогревателей паровых котлов полное исключение низкотемпературной коррозии обеспечивается при расчетной температуре стенки наиболее холодного участка, превышающей температуру точки росы при всех нагрузках котла на 5 - 10 °С (минимальное значение относится к минимальной нагрузке).

7. Расчет температуры стенки трубчатых (ТВП) и регенеративных (РВП) воздухоподогревателей выполняется по рекомендациям «Теплового расчета котельных агрегатов. Нормативный метод» (М.: Энергия, 1973).

8. При применении в трубчатых воздухоподогревателях в качестве первого (по воздуху) хода сменяемых холодных кубов или кубов из труб с кислостойким покрытием (эмалированные и т.п.), а также изготовленных из коррозионностойких материалов на условия полного исключения низкотемпературной коррозии проверяются следующие за ними (по воздуху) металлические кубы воздухоподогревателя. В этом случае выбор температуры стенки холодных металлических кубов сменяемых, а также коррозионностойких кубов, должен исключать интенсивное загрязнение труб, для чего их минимальная температура стенки при сжигании сернистых мазутов должна быть ниже точки росы дымовых газов не более чем на 30 - 40 °С. При сжигании твердых сернистых топлив минимальная температура стенки трубы по условиям предупреждения интенсивного ее загрязнения должна приниматься не менее 80 °С.

9. В РВП на условиях полного исключения низкотемпературной коррозии рассчитывается их горячая часть. Холодная часть РВП выполняется коррозионностойкой (эмалированная, керамическая, из низколегированной стали и т.п.) или сменяемой из плоских металлических листов толщиной 1,0 - 1,2 мм, изготовленных из малоуглеродистой стали. Условия предупреждения интенсивного загрязнения набивки соблюдаются при выполнении требований п. настоящего документа.

10. В качестве эмалированной применяется набивка из металлических листов толщиной 0,6 мм. Срок службы эмалированной набивки, изготовленной в соответствии с ТУ 34-38-10336-89, составляет 4 года.

В качестве керамической набивки могут применяться фарфоровые трубки, керамические блоки, или фарфоровые пластины с выступами.

Учитывая сокращение потребления мазута тепловыми электростанциями, целесообразно применять для холодной части РВП набивку из низколегированной стали 10ХНДП или 10ХСНД, коррозионная стойкость которой в 2 - 2,5 раза выше, чем у малоуглеродистой стали.

11. Для защиты воздухоподогревателей от низкотемпературной коррозии в пусковой период следует выполнить мероприятия, изложенные в «Руководящих указаниях по проектированию и эксплуатации энергетических калориферов с проволочным оребрением» (М.: СПО Союзтехэнерго, 1981).

Растопку котла на сернистом мазуте, следует проводить с предварительно включенной системой подогрева воздуха. Температура воздуха перед воздухоподогревателем в начальный период растопки должна быть как правило, 90 °С.

11а. Для защиты воздухоподогревателей от низкотемпературной («стояночной») коррозии на остановленном котле, уровень которой примерно вдвое выше скорости коррозии в период эксплуатации, перед остановкой котла следует провести тщательную очистку воздухоподогревателей от наружных отложений. При этом перед остановом котла температуру воздуха на входе в воздухоподогреватель рекомендуется поддерживать на уровне ее значения при номинальной нагрузке котла.

Очистка ТВП осуществляется дробью с плотностью ее подачи не менее 0,4 кг/м.с (п. настоящего документа).

Для твердых топлив с учетом значительной опасности коррозии золоуловителей температура уходящих газов должна выбираться выше точки росы дымовых газов на 15 - 20 °С.

Для сернистых мазутов температура уходящих газов должна превышать температуру точки росы при номинальной нагрузке котла примерно на 10 °С.

В зависимости от содержания серы в мазуте следует принимать расчетное значение температуры уходящих газов при номинальной нагрузке котла, указанное ниже:

Температура уходящих газов, ºС...... 140 150 160 165

При сжигании сернистого мазута с предельно малыми избытками воздуха (α ≤ 1,02) температура уходящих газов может приниматься более низкой с учетом результатов измерений точки росы. В среднем переход от малых избытков воздуха к предельно малым снижает температуру точки росы на 15 - 20 °С.

На условия обеспечения надежной работы дымовой трубы и предупреждения выпадения влаги на ее стенки влияет не только температура уходящих газов, но также и их расход. Работа трубы с режимами нагрузки существенно ниже проектных увеличивает вероятность низкотемпературной коррозии.

При сжигании природного газа температуру уходящих газов рекомендуется иметь не ниже 80 °С.

13. При снижении нагрузки котла в диапазоне 100 - 50 % от номинальной следует стремиться к стабилизации температуры уходящих газов, не допуская ее снижения более, чем на 10 °С от номинальной.

Наиболее экономичным способом стабилизации температуры уходящих газов является повышение температуры предварительного подогрева воздуха в калориферах по мере снижение нагрузки.

Минимально допустимые значения температур предварительного подогрева воздуха перед РВП принимается в соответствии с п. 4.3.28 «Правил технической эксплуатации электрических станций и сетей» (М.: Энергоатомиздат, 1989).

В тех случаях, когда оптимальные температуры уходящих газов не могут быть обеспечены из-за недостаточной поверхности нагрева РВП, должны приниматься значения температур предварительного подогрева воздуха, при которых температура уходящих газов не превысит значений, приведенных в п. настоящих Методических указаний.

16. Ввиду отсутствия надежных кислотостойких покрытий для защиты от низкотемпературной коррозии металлических газоходов надежная работа их может быть обеспечена тщательной изоляцией, обеспечивающей разность температур между дымовыми газами и стенкой не более 5 °С.

Применяемые в настоящее время изоляционные материалы и конструкции недостаточно надежны в длительной эксплуатации, поэтому необходимо вести периодический, не реже одного раза в год, контроль за их состоянием и при необходимости выполнять ремонтно-восстановительные работы.

17. При использовании в опытном порядке для защиты газоходов от низкотемпературной коррозии различных покрытий следует учитывать, что последние должны обеспечивать термостойкость и газоплотность при температурах, превышающих температуру уходящих газов не менее чем на 10 °С, стойкость к воздействию серной кислоты концентрации 50 - 80 % в интервале температур соответственно 60 - 150 °С и возможность их ремонта и восстановления.

18. Для низкотемпературных поверхностей, конструкционных элементов РВП и газоходов котлов целесообразно использование низколегированных сталей 10ХНДП и 10ХСНД, превосходящих по коррозионной стойкости углеродистую сталь в 2 - 2,5 раза.

Абсолютной коррозионной стойкостью обладают лишь весьма дефицитные и дорогие высоколегированные стали (например, сталь ЭИ943, содержащая до 25 % хрома и до 30 % никеля).

Приложение

1. Теоретически температура точки росы дымовых газов с заданным содержанием паров серной кислоты и воды может быть определена как температура кипения раствора серной кислоты такой концентрации, при которой над раствором имеется то же самое содержание паров воды и серной кислоты.

Измеренное значение температуры точки росы в зависимости от методики измерения может не совпадать с теоретическим. В данных рекомендациях за температуру точки росы дымовых газов t р принята температура поверхности стандартного стеклянного датчика с впаянными на расстоянии 7 мм один от другого платиновыми электродами длиной 7 мм, при которой сопротивление пленки росы между электродами в установившемся состоянии равно 10 7 Ом. В измерительной цепи электродов используется переменный ток низкого напряжения (6 - 12 В).

2. При сжигании сернистых мазутов с избытками воздуха 3 - 5 % температура точки росы дымовых газов зависит от содержания серы в топливе S p (рис.).

При сжигании сернистых мазутов с предельно низкими избытками воздуха (α ≤ 1,02) температура точки росы дымовых газов должна приниматься по результатам специальных измерений. Условия перевода котлов в режим с α ≤ 1,02 изложены в «Руководящих указаниях по переводу котлов, работающих на сернистых топливах, в режим сжигания с предельно малыми избытками воздуха» (М.: СПО Союзтехэнерго, 1980).

3. При сжигании сернистых твердых топлив в пылевидном состоянии температура точки росы дымовых газов t p может быть подсчитана по приведенному содержанию в топливе серы и золы S р пр , А р пр и температуре конденсации водяных паров t кон по формуле

где a ун - доля золы в уносе (обычно принимается 0,85).

Рис. 1. Зависимость температуры точки росы дымовых газов от содержания серы в сжигаемом мазуте

Значение первого члена этой формулы при a ун = 0,85 можно определить по рис. .

Рис. 2. Разности температур точки росы дымовых газов и конденсации водяных паров в них в зависимости от приведенных содержаний серы (S р пр ) и золы (А р пр ) в топливе

4. При сжигании газообразных сернистых топлив точка росы дымовых газов может быть определена по рис. при условии, что содержание серы в газе рассчитывается как приведенное, то есть в процентах по массе на 4186,8 кДж/кг (1000 ккал/кг) теплоты сгорания газа.

Для газового топлива приведенное содержание серы в процентах по массе может быть определено по формуле

где m - число атомов серы в молекуле серосодержащего компонента;

q - объемный процент серы (серосодержащего компонента);

Q н - теплота сгорания газа в кДж/м 3 (ккал/нм 3);

С - коэффициент, равный 4,187, если Q н выражено в кДж/м 3 и 1,0, если в ккал/м 3 .

5. Скорость коррозии сменяемой металлической набивки воздухоподогревателей при сжигании мазута зависит от температуры металла и степени коррозионной активности дымовых газов.

При сжигании сернистого мазута с избытком воздуха 3 - 5 % и обдувке поверхности паром скорость коррозии (с двух сторон в мм/год) набивки РВП ориентировочно может быть оценена по данным табл. .

Таблица 1

Таблица 2

До 0,1

Содержание в мазуте серы S p , %

Скорость коррозии (мм/год) при температуре стенки, °С

75 - 95

96 - 100

101 - 110

111 - 115

116 - 125

Менее 1,0

0,10

0,20

0,30

0,20

0,10

1 - 2

0,10

0,25

0,40

0,30

0,15

Более 2

131 - 140

Более 140

До 0,1

0,10

0,15

0,10

0,10

0,10

Св. 0,11 до 0,4 вкл.

0,10

0,20

0,10

0,15

0,10

Св. 0,41 до 1,0 вкл.

0,15

0,25

0,30

0,35

0,20

0,30

0,15

0,10

0,05

Св. 0,11 до 0,4 вкл.

0,20

0,40

0,25

0,15

0,10

Св. 0,41 до 1,0 вкл.

0,25

0,50

0,30

0,20

0,15

Свыше 1,0

0,30

0,60

0,35

0,25

0,15

6. Для углей с высоким содержанием окиси кальция в золе температуры точки росы оказываются ниже вычисленных по п. настоящих Методических указаний. Для таких топлив рекомендуется использовать результаты непосредственных измерений.