Wie Sie wissen, addieren sich bei der Multiplikation von Ausdrücken mit Potenzen immer deren Exponenten (a b *a c = a b+c). Dieses mathematische Gesetz wurde von Archimedes abgeleitet und später, im 8. Jahrhundert, erstellte der Mathematiker Virasen eine Tabelle ganzzahliger Exponenten. Sie dienten der weiteren Entdeckung der Logarithmen. Beispiele für die Verwendung dieser Funktion finden sich fast überall dort, wo Sie umständliche Multiplikationen durch einfache Addition vereinfachen müssen. Wenn Sie diesen Artikel 10 Minuten lang lesen, erklären wir Ihnen, was Logarithmen sind und wie man mit ihnen arbeitet. In einfacher und zugänglicher Sprache.

Definition in der Mathematik

Ein Logarithmus ist ein Ausdruck der folgenden Form: log a b=c, d. h. der Logarithmus einer beliebigen nicht negativen (d. h. positiven) Zahl „b“ zu ihrer Basis „a“ wird als Potenz „c“ betrachtet ” auf die es notwendig ist, die Basis „a“ anzuheben, um letztendlich den Wert „b“ zu erhalten. Lassen Sie uns den Logarithmus anhand von Beispielen analysieren. Nehmen wir an, es gibt einen Ausdruck log 2 8. Wie finde ich die Antwort? Es ist ganz einfach: Sie müssen eine solche Potenz finden, dass Sie von 2 bis zur erforderlichen Potenz 8 erhalten. Nachdem wir einige Berechnungen im Kopf durchgeführt haben, erhalten wir die Zahl 3! Und das stimmt, denn 2 hoch 3 ergibt eine 8.

Arten von Logarithmen

Für viele Schüler und Studenten erscheint dieses Thema kompliziert und unverständlich, aber tatsächlich sind Logarithmen nicht so beängstigend, die Hauptsache ist, ihre allgemeine Bedeutung zu verstehen und sich ihre Eigenschaften und einige Regeln zu merken. Es gibt drei verschiedene Arten logarithmischer Ausdrücke:

  1. Natürlicher Logarithmus ln a, wobei die Basis die Euler-Zahl ist (e = 2,7).
  2. Dezimalzahl a, wobei die Basis 10 ist.
  3. Logarithmus einer beliebigen Zahl b zur Basis a>1.

Jeder von ihnen wird auf Standardmethode gelöst, einschließlich Vereinfachung, Reduktion und anschließender Reduktion auf einen einzelnen Logarithmus unter Verwendung logarithmischer Theoreme. Um die richtigen Werte von Logarithmen zu erhalten, sollten Sie sich beim Lösen deren Eigenschaften und die Reihenfolge der Aktionen merken.

Regeln und einige Einschränkungen

In der Mathematik gibt es mehrere Regeln und Einschränkungen, die als Axiom akzeptiert werden, das heißt, sie unterliegen keiner Diskussion und sind die Wahrheit. Beispielsweise ist es unmöglich, Zahlen durch Null zu dividieren, und es ist auch unmöglich, die gerade Wurzel negativer Zahlen zu ziehen. Logarithmen haben auch ihre eigenen Regeln, nach denen Sie leicht lernen können, auch mit langen und umfangreichen logarithmischen Ausdrücken zu arbeiten:

  • Die Basis „a“ muss immer größer als Null und nicht gleich 1 sein, sonst verliert der Ausdruck seine Bedeutung, da „1“ und „0“ in jedem Grad immer gleich ihren Werten sind;
  • Wenn a > 0, dann a b > 0, stellt sich heraus, dass „c“ ebenfalls größer als Null sein muss.

Wie löst man Logarithmen?

Zum Beispiel wird die Aufgabe gestellt, die Antwort auf die Gleichung 10 x = 100 zu finden. Das ist sehr einfach, Sie müssen eine Potenz wählen, indem Sie die Zahl zehn erhöhen, auf die wir 100 erhalten. Das ist natürlich 10 2 = 100.

Lassen Sie uns diesen Ausdruck nun in logarithmischer Form darstellen. Wir erhalten log 10 · 100 = 2. Beim Lösen von Logarithmen konvergieren praktisch alle Aktionen, um die Potenz zu finden, mit der die Basis des Logarithmus eingegeben werden muss, um eine gegebene Zahl zu erhalten.

Um den Wert eines unbekannten Grades genau zu bestimmen, müssen Sie lernen, mit einer Gradtabelle zu arbeiten. Es sieht so aus:

Wie Sie sehen, können einige Exponenten intuitiv erraten werden, wenn Sie über technisches Verständnis und Kenntnisse der Multiplikationstabelle verfügen. Für größere Werte benötigen Sie jedoch eine Leistungstabelle. Es kann auch von Personen verwendet werden, die überhaupt keine Ahnung von komplexen mathematischen Themen haben. Die linke Spalte enthält Zahlen (Basis a), die obere Zahlenreihe gibt den Wert der Potenz c an, mit der die Zahl a erhöht wird. Am Schnittpunkt enthalten die Zellen die Zahlenwerte, die die Antwort darstellen (a c =b). Nehmen wir zum Beispiel die allererste Zelle mit der Zahl 10 und quadrieren sie, wir erhalten den Wert 100, der am Schnittpunkt unserer beiden Zellen angezeigt wird. Alles ist so einfach und leicht, dass selbst der wahrste Humanist es verstehen wird!

Gleichungen und Ungleichungen

Es stellt sich heraus, dass unter bestimmten Bedingungen der Exponent der Logarithmus ist. Daher können alle mathematischen numerischen Ausdrücke als logarithmische Gleichheit geschrieben werden. Beispielsweise kann 3 4 =81 als Logarithmus zur Basis 3 von 81 gleich vier geschrieben werden (log 3 81 = 4). Für negative Mächte Die Regeln sind die gleichen: 2 -5 = 1/32, wir schreiben es als Logarithmus, wir erhalten log 2 (1/32) = -5. Einer der faszinierendsten Bereiche der Mathematik ist das Thema „Logarithmen“. Wir werden uns unten Beispiele und Lösungen der Gleichungen ansehen, unmittelbar nachdem wir ihre Eigenschaften untersucht haben. Schauen wir uns nun an, wie Ungleichungen aussehen und wie man sie von Gleichungen unterscheidet.

Gegeben sei ein Ausdruck der folgenden Form: log 2 (x-1) > 3 – das ist es logarithmische Ungleichung, da der unbekannte Wert „x“ unter dem Vorzeichen des Logarithmus steht. Und auch im Ausdruck werden zwei Größen verglichen: Der Logarithmus der gewünschten Zahl zur Basis zwei ist größer als die Zahl drei.

Der wichtigste Unterschied zwischen logarithmischen Gleichungen und Ungleichungen besteht darin, dass Gleichungen mit Logarithmen (z. B. der Logarithmus 2 x = √9) einen oder mehrere bestimmte numerische Werte in der Antwort implizieren, während bei der Lösung einer Ungleichung beide Bereiche akzeptabel sind Werte und die Punkte werden durch Brechen dieser Funktion bestimmt. Folglich handelt es sich bei der Antwort nicht um eine einfache Menge einzelner Zahlen, wie bei der Antwort auf eine Gleichung, sondern um eine kontinuierliche Reihe oder Menge von Zahlen.

Grundlegende Sätze über Logarithmen

Bei der Lösung primitiver Aufgaben zur Ermittlung der Werte des Logarithmus sind seine Eigenschaften möglicherweise nicht bekannt. Wenn es jedoch um logarithmische Gleichungen oder Ungleichungen geht, ist es zunächst notwendig, alle grundlegenden Eigenschaften von Logarithmen klar zu verstehen und in der Praxis anzuwenden. Wir werden uns später Beispiele für Gleichungen ansehen; schauen wir uns zunächst jede Eigenschaft genauer an.

  1. Die Hauptidentität sieht so aus: a logaB =B. Dies gilt nur, wenn a größer als 0, ungleich eins und B größer als Null ist.
  2. Der Logarithmus des Produkts kann in der folgenden Formel dargestellt werden: log d (s 1 * s 2) = log d s 1 + log d s 2. In diesem Fall lautet die obligatorische Bedingung: d, s 1 und s 2 > 0; a≠1. Sie können einen Beweis für diese logarithmische Formel mit Beispielen und Lösung geben. Sei log a s 1 = f 1 und log a s 2 = f 2, dann a f1 = s 1, a f2 = s 2. Wir erhalten, dass s 1 * s 2 = a f1 *a f2 = a f1+f2 (Eigenschaften von Grad ), und dann per Definition: log a (s 1 * s 2) = f 1 + f 2 = log a s1 + log a s 2, was bewiesen werden musste.
  3. Der Logarithmus des Quotienten sieht folgendermaßen aus: log a (s 1/ s 2) = log a s 1 - log a s 2.
  4. Der Satz in Form einer Formel übernimmt nächste Ansicht: log a q b n = n/q log a b.

Diese Formel wird „Eigenschaft des Logarithmusgrades“ genannt. Es ähnelt den Eigenschaften gewöhnlicher Grade, und das ist nicht überraschend, da die gesamte Mathematik auf natürlichen Postulaten basiert. Schauen wir uns den Beweis an.

Sei log a b = t, es ergibt sich a t =b. Potenzieren wir beide Teile m: a tn = b n ;

aber da a tn = (a q) nt/q = b n, also log a q b n = (n*t)/t, dann log a q b n = n/q log a b. Der Satz ist bewiesen.

Beispiele für Probleme und Ungleichheiten

Die häufigsten Arten von Logarithmenproblemen sind Beispiele für Gleichungen und Ungleichungen. Sie finden sich in fast allen Aufgabenbüchern und sind auch Pflichtbestandteil von Mathematikprüfungen. Für die Zulassung zum Studium oder das Bestehen Aufnahmeprüfungen In der Mathematik muss man wissen, wie man solche Probleme richtig löst.

Leider gibt es keinen einheitlichen Plan oder Schema zur Lösung und Bestimmung des unbekannten Wertes des Logarithmus, aber bestimmte Regeln können auf jede mathematische Ungleichung oder logarithmische Gleichung angewendet werden. Zunächst sollten Sie herausfinden, ob der Ausdruck vereinfacht oder auf eine allgemeine Form reduziert werden kann. Vereinfachen Sie lange logarithmische Ausdrücke möglich, wenn Sie ihre Eigenschaften richtig nutzen. Lernen wir sie schnell kennen.

Beim Lösen logarithmischer Gleichungen müssen wir bestimmen, um welche Art von Logarithmus es sich handelt: Ein Beispielausdruck kann einen natürlichen Logarithmus oder einen Dezimallogarithmus enthalten.

Hier sind Beispiele ln100, ln1026. Ihre Lösung läuft darauf hinaus, dass sie die Potenz bestimmen müssen, bei der die Basis 10 gleich 100 bzw. 1026 ist. Für Lösungen natürlicher Logarithmen müssen Sie sich bewerben logarithmische Identitäten oder deren Eigenschaften. Schauen wir uns Beispiele für die Lösung logarithmischer Probleme verschiedener Art an.

So verwenden Sie Logarithmusformeln: Mit Beispielen und Lösungen

Schauen wir uns also Beispiele für die Verwendung der grundlegenden Sätze über Logarithmen an.

  1. Die Eigenschaft des Logarithmus eines Produkts kann bei Aufgaben verwendet werden, bei denen eine Erweiterung erforderlich ist großer Wert Zahlen b in einfachere Faktoren. Beispiel: log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. Die Antwort ist 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 – wie Sie sehen können, ist es uns mithilfe der vierten Eigenschaft der Logarithmuspotenz gelungen, einen scheinbar komplexen und unlösbaren Ausdruck zu lösen. Sie müssen lediglich die Basis faktorisieren und dann die Exponentenwerte aus dem Vorzeichen des Logarithmus entnehmen.

Aufgaben aus dem Einheitlichen Staatsexamen

Logarithmen kommen häufig in Aufnahmeprüfungen vor, insbesondere viele logarithmische Aufgaben im Einheitlichen Staatsexamen (Staatsexamen für alle Schulabsolventen). Typischerweise sind diese Aufgaben nicht nur in Teil A (dem einfachsten Prüfungsteil der Prüfung) enthalten, sondern auch in Teil C (die komplexesten und umfangreichsten Aufgaben). Die Prüfung erfordert genaue und perfekte Kenntnisse des Themas „Natürliche Logarithmen“.

Beispiele und Problemlösungen stammen aus offiziellen Quellen Optionen für das einheitliche Staatsexamen. Mal sehen, wie solche Aufgaben gelöst werden.

Gegeben sei log 2 (2x-1) = 4. Lösung:
Schreiben wir den Ausdruck um und vereinfachen ihn ein wenig log 2 (2x-1) = 2 2, durch die Definition des Logarithmus erhalten wir 2x-1 = 2 4, also 2x = 17; x = 8,5.

  • Damit die Lösung nicht umständlich und unübersichtlich wird, reduziert man am besten alle Logarithmen auf die gleiche Basis.
  • Alle Ausdrücke unter dem Logarithmuszeichen werden als positiv angezeigt. Wenn daher der Exponent eines Ausdrucks, der unter dem Logarithmuszeichen steht und dessen Basis ist, als Multiplikator herausgenommen wird, muss der unter dem Logarithmus verbleibende Ausdruck positiv sein.

Was ist ein Logarithmus?

Aufmerksamkeit!
Es gibt noch weitere
Materialien im Sonderabschnitt 555.
Für diejenigen, die sehr „nicht sehr…“ sind
Und für diejenigen, die „sehr…“)

Was ist ein Logarithmus? Wie löst man Logarithmen? Diese Fragen verwirren viele Absolventen. Traditionell gilt das Thema Logarithmen als komplex, unverständlich und beängstigend. Besonders Gleichungen mit Logarithmen.

Das ist absolut nicht wahr. Absolut! Glauben Sie mir nicht? Bußgeld. Jetzt können Sie in nur 10 bis 20 Minuten:

1. Verstehen Was ist ein Logarithmus?.

2. Lernen Sie, eine ganze Klasse zu lösen Exponentialgleichungen. Auch wenn Sie noch nichts davon gehört haben.

3. Lernen Sie, einfache Logarithmen zu berechnen.

Darüber hinaus müssen Sie dazu nur das Einmaleins kennen und wissen, wie man eine Zahl potenziert ...

Ich habe das Gefühl, dass Sie Zweifel haben ... Na gut, nehmen Sie sich die Zeit! Lass uns gehen!

Lösen Sie zunächst diese Gleichung im Kopf:

Wenn Ihnen diese Seite gefällt...

Übrigens habe ich noch ein paar weitere interessante Seiten für Sie.)

Sie können das Lösen von Beispielen üben und Ihr Niveau herausfinden. Testen mit sofortiger Verifizierung. Lasst uns lernen – mit Interesse!)

Sie können sich mit Funktionen und Ableitungen vertraut machen.

Lektion und Präsentation zu den Themen: „Natürliche Logarithmen. Die Basis des natürlichen Logarithmus. Der Logarithmus einer natürlichen Zahl“

Zusätzliche Materialien
Liebe Benutzer, vergessen Sie nicht, Ihre Kommentare, Bewertungen und Wünsche zu hinterlassen! Alle Materialien wurden von einem Antivirenprogramm überprüft.

Lehrmittel und Simulatoren im Integral Online-Shop für die 11. Klasse
Interaktives Handbuch für die Klassen 9–11 „Trigonometrie“
Interaktives Handbuch für die Klassen 10–11 „Logarithmen“

Was ist natürlicher Logarithmus?

Leute, in der letzten Lektion haben wir eine neue, besondere Nummer gelernt – z. B. Heute werden wir mit dieser Nummer weiterarbeiten.
Wir haben Logarithmen studiert und wissen, dass die Basis eines Logarithmus viele Zahlen größer als 0 sein kann. Heute werden wir uns auch einen Logarithmus ansehen, dessen Basis die Zahl e ist. Ein solcher Logarithmus wird normalerweise als natürlicher Logarithmus bezeichnet. Es gibt eine eigene Schreibweise: $\ln(n)$ ist der natürliche Logarithmus. Dieser Eintrag entspricht dem Eintrag: $\log_e(n)=\ln(n)$.
Exponential- und Logarithmusfunktionen sind Umkehrfunktionen, dann ist der natürliche Logarithmus die Umkehrfunktion der Funktion: $y=e^x$.
Umkehrfunktionen sind symmetrisch bezüglich der Geraden $y=x$.
Zeichnen wir den natürlichen Logarithmus, indem wir die Exponentialfunktion in Bezug auf die gerade Linie $y=x$ zeichnen.

Es ist erwähnenswert, dass der Neigungswinkel der Tangente an den Graphen der Funktion $y=e^x$ am Punkt (0;1) 45° beträgt. Dann beträgt der Neigungswinkel der Tangente an den Graphen des natürlichen Logarithmus am Punkt (1;0) ebenfalls 45°. Beide Tangenten verlaufen parallel zur Linie $y=x$. Lassen Sie uns die Tangenten grafisch darstellen:

Eigenschaften der Funktion $y=\ln(x)$

1. $D(f)=(0;+∞)$.
2. Ist weder gerade noch ungerade.
3. Erhöht sich im gesamten Definitionsbereich.
4. Keine Begrenzung von oben, keine Begrenzung von unten.
5. Es gibt keinen größten Wert, keinen minimalen Wert.
6. Kontinuierlich.
7. $E(f)=(-∞; +∞)$.
8. Konvex nach oben.
9. Überall differenzierbar.

Im Wissen Höhere Mathematik das ist bewiesen Die Ableitung einer Umkehrfunktion ist die Umkehrung der Ableitung einer gegebenen Funktion.
Es macht nicht viel Sinn, auf den Beweis einzugehen. Schreiben wir einfach die Formel: $y"=(\ln(x))"=\frac(1)(x)$.

Beispiel.
Berechnen Sie den Wert der Ableitung der Funktion: $y=\ln(2x-7)$ am Punkt $x=4$.
Lösung.
IN Gesamtansicht Unsere Funktion wird durch die Funktion $y=f(kx+m)$ dargestellt, wir können die Ableitungen solcher Funktionen berechnen.
$y"=(\ln((2x-7)))"=\frac(2)((2x-7))$.
Berechnen wir den Wert der Ableitung am gewünschten Punkt: $y"(4)=\frac(2)((2*4-7))=2$.
Antwort: 2.

Beispiel.
Zeichnen Sie eine Tangente an den Graphen der Funktion $y=ln(x)$ am Punkt $х=е$.
Lösung.
Wir erinnern uns gut an die Gleichung der Tangente an den Graphen einer Funktion am Punkt $x=a$.
$y=f(a)+f"(a)(x-a)$.
Wir berechnen nacheinander die erforderlichen Werte.
$a=e$.
$f(a)=f(e)=\ln(e)=1$.
$f"(a)=\frac(1)(a)=\frac(1)(e)$.
$y=1+\frac(1)(e)(x-e)=1+\frac(x)(e)-\frac(e)(e)=\frac(x)(e)$.
Die Tangentengleichung am Punkt $x=e$ ist die Funktion $y=\frac(x)(e)$.
Zeichnen wir den natürlichen Logarithmus und die Tangente.

Beispiel.
Untersuchen Sie die Funktion auf Monotonie und Extrema: $y=x^6-6*ln(x)$.
Lösung.
Der Definitionsbereich der Funktion $D(y)=(0;+∞)$.
Finden wir die Ableitung der gegebenen Funktion:
$y"=6*x^5-\frac(6)(x)$.
Die Ableitung existiert für alle x aus dem Definitionsbereich, dann gibt es keine kritischen Punkte. Finden wir stationäre Punkte:
$6*x^5-\frac(6)(x)=0$.
$\frac(6*x^6-6)(x)=0$.
$6*x^6-6=0$.
$x^6-1=0$.
$x^6=1$.
$x=±1$.
Der Punkt $х=-1$ gehört nicht zum Definitionsbereich. Dann haben wir einen stationären Punkt $x=1$. Finden wir die Intervalle der Zunahme und Abnahme:

Punkt $x=1$ ist der minimale Punkt, dann ist $y_min=1-6*\ln(1)=1$.
Antwort: Die Funktion nimmt auf der Strecke (0;1] ab, die Funktion nimmt auf dem Strahl $ zu)