Неспелые фрукты, щавель, барбарис, клюква, лимон… Что общего между ними? даже дошкольник, не задумываясь, ответит: они кислые. А вот обусловлен кислый вкус плодов и листьев многих растений различными карбоновыми кислотами - веществами, в состав которых входит одна или несколько карбоксильных групп -СООН.

У древних греков представление о кислом вкусе связывалось, прежде всего, с уксусом - раствором уксусной кислоты, образующейся при скисании вина. Само слово «уксус», или, как говорили жители Эллады, «оксис», означало «кислый». Получение уксуса при сухой перегонке - нагревании без доступа воздуха - древесины описано в сочинениях Иоганна Глаубера и Роберта Бойля. Однако природа этого вещества вплоть до XIX в. оставалась неизвестной. Алхимики считали, что при брожении вина винный спирт превращается в уксус, принимая на себя частицы - винного камня (гидротартрата калия С 4 H 5 О 6 K). Ещё в ХVIII в. брожение объясняли соединением кислых и горючих начал вина. Лишь в 1814 г. Якоб Берцелиус определил состав уксусной кислоты - С 2 Н 4 О 2 , а в 1845 г. немецкий химик Адольф Вильгельм Герман Кольбе (1818- 1884) осуществил полный её синтез из угля.

А. Г. Кольбе

Уксусная кислота относится к гомологическому ряду одноосновных карбоновых кислот. Низшие члены ряда при комнатной температуре представляют собой бесцветные жидкости с резким запахом. Простейшую из них - муравьиную кислоту НСООН, впервые получил в 1670 г. английский естествоиспытатель Джон Рей, нагревая муравьев в перегонной колбе. В природе широко распространены и более сложные по составу кислоты. Такова, например, масляная кислота СН 3 (СН 2) 2 СООН, которая образуется при прогоркании сливочного масла - это из-за нее испорченное масло так неприятно пахнет и горчит. Она обусловливает и запах пота. Родственная ей капроновая кислота СН 3 (СН 2) 4 СООН входит в состав козьего масла. В корнях растения валерианы содержится некоторое количество изовалериановой кислоты(СН 3) 2 СН – СН 2 СООН- ее можно выделить, обработав высушенные корни растения перегретым водяным паром.

Высшие кислоты, например стеариновая СН 3 (СН 2) 16 СООН и пальмитиновая CН 3 (CH 2) 14 COOH, впервые выделенная из пальмового масла, представляют собой бесцветные твёрдые вещества, не растворимые в воде. Долгое время основным их источником были природные жиры, например свиное сало или говяжий жир. Сейчас эти получают и синтетически - каталитическим окислением углеводородов нефти. Практическое значение имеют главным образом натриевые соли этих кислот - стеарат натрия C 17 H 35 COONa и пальмитат натрия C 15 H 31 COONa: они являются основными компонентами мыла.

В щавеле, а также в ревене, кислице, шпинате содержится щавелевая кислота НООС-СООН. Эта простейшая двухосновная кислота продукт распада некоторых аминокислот, например глицина. При нарушениях обмена веществ (в частности, при недостатке витамина В 12) в организме человека откладывается её малорастворимая кальциевая соль - оксалат кальция, это и есть так называемое оксалатное отложение солей. Янтарная кислота НООС-СН 2 СН 2 – СООН впервые была выделена алхимиками. Ещё Агрикола наблюдал при прокаливании янтаря образование похожего на соль белого налета янтарной кислоты (лат sal succini volatile - «летучая янтарная соль»).

Многие карбоновые кислоты — например, яблочная, винная, лимонная, хинная - образуются в вакуолях клеток плодов при частичном окислении глюкозы и в результате некоторых других биохимических процессов. Плоды цитрусовых богаты лимонной кислотой: в мякоти апельсина её около 2%, в грейпфруте - до 3%, а в лимоне - 6%. Поэтому неудивительно, что впервые она была выделена Шееле в 1784 г. именно из лимонов. Подобный эксперимент можно проделать и в школьной лаборатории: нужно лимонный сок обработать известью, а продукт этой реакции - кальциевую соль отфильтровать и разложить серной кислотой. Образующаяся в результате лимонная кислота переходит в раствор, который упаривают до начала кристаллизации. В зелёных яблоках, крыжовнике, плодах рябины содержатся не только яблочная, хинная, но и другие органические кислоты.

По основности кислоты делятся на:

Одноосновные (монокарбоновые), m = 1;

Двухосновные (дикарбоновые), m = 2;

Трехосновные (трикарбоновые), m = 3 и т. д.

Примерами дикарбоновых кислот являются:

В зависимости от строения углеводородного радикала R карбоновые кислоты делятся на:

Предельные (насыщенные), R = алкил;

Непредельные (ненасыщенные) - производные непредельных УВ;

Ароматические - производные ароматических УВ.

Насыщенные монокарбоновые кислоты

Наибольшее значение имеют насыщенные монокарбоновые кислоты, их общая формула:

Важнейшие представители гомологического ряда этих кислот представлены в таблице. В этой таблице приведены названия кислот RCOOH и кислотных остатков RCOO-.

В структуре карбоновых кислот часто выделяют также кислотные радикалы , или ацилы . Названия некоторых ацилов:

Номенклатура и изомерия

По международной заместительной номенклатуре название кислоты производят от названия соответствующего (с тем же числом атомов углерода) углеводорода с добавлением окончания -овая и слова кислота. Нумерацию цепи всегда начинают с атома углерода карбоксильной группы, поэтому в названиях положение группы -СООН не указывают. Например:

При составлении названий кислот, имеющих сложное строение, иногда также используют тривиальные названия кислот, соответствующие наиболее длинной прямой цепи. В этом случае атомы углерода в прямой цепи обозначают греческими буквами, начиная с атома , соседнего с карбоксильной группой: α (альфа),β (бета), γ (гамма), δ (дельта) и т. д., например:

Внутри класса предельных монокарбоновых кислот возможна только изомерия углеродной цепи. Первые три члена гомологического ряда (НСООН, СН 3 СООН, С 2 Н 5 СООН) изомеров не имеют. Четвертый член ряда существует в виде двух изомеров:

Пятый член ряда существует в виде четырех изомеров:

Монокарбоновые кислоты изомерны сложным эфирам карбоновых кислот:

Физические свойства

В твердом и жидком состояниях молекулы насыщенных монокарбоновых кислот димеризуются в результате образования между ними водородных связей:

Водородная связь в кислотах сильнее, чем в , поэтому температуры кипения кислот больше температур кипения соответствующих спиртов.

В водных растворах кислоты образуют линейные димеры:

Химические свойства

Для насыщенных монокарбоновых кислот характерна высокая реакционная способность. Это определяется главным образом реакциями карбоксильной группы (разрыв связей О-Н и С-О), а также реакциями замещения атомов «Н» у α-углеродного атома:

Реакции с разрывом связи О-Н (кислотные свойства, обусловленные подвижностью атома водорода карбоксильной группы)

Предельные монокарбоновые кислоты обладают всеми свойствами обычных кислот.

1.Диссоциация

В водных растворах монокарбоновые кислоты ведут себя как одноосновные кислоты: происходит их ионизация с образованием иона водорода и карбоксилат-иона:

Карбоксилат-ион построен симметрично, отрицательный заряд делокализован между атомами кислорода карбоксильной группы:

Делокализация стабилизирует карбоксилат-ион.

Карбоновые кислоты являются слабыми кислотами. Наиболее сильной в гомологическом ряду насыщенных кислот является муравьиная кислота, в которой группа -СООН связана с атомом . Алкильные радикалы в молекулах следующих членов гомологического ряда обладают положительным индукционным эффектом (+1) и уменьшают положительный заряд на атоме углерода карбоксильной группы. Это в свою очередь ослабляет полярность связи О-Н и тем в большей степени, чем больше УВ радикал. Поэтому в гомологическом ряду кислот их сила уменьшается с ростом числа атомов углерода в молекуле:

2.Образование солей:

а) взаимодействие с активными :

2НСООН + Mg → (HCOO) 2 Mg + H 2

2CH 3 COOH + CaO → (CH 3 COO) 2 Ca + H 2 O

CH 3 COOH + NH 3 → CH 3 COONH 4

CH 3 COOH + NH 4 OH → CH 3 COONH 4 + H 2 O

д) взаимодействие с солями более слабых кислот (карбонатами и гидрокарбонатами):

2CH 3 COOH + Na 2 CO 3 → 2CH 3 COONa + CO 2 + H 2 O

CH 3 CH 2 CH 2 COOH + NaHCO 3 → CH 3 CH 2 CH 2 COONa + CO 2 + H 2 O

II . Реакции с разрывом связи С-О (замещение ОН-группы)

Скачать рефераты по другим темам можно

Карбоновыми кислотами называются производные углеводородов, в молекуле которых содержится одна или несколько карбоксильных групп -COOH.
Общая формула карбоновых кислот:
В зависимости от природы радикала, связанного с карбоксильной группой, кислоты подразделяются на предельные, непредельные и ароматические.
Число карбоксильных групп определяет основность кислот.
Общая формула предельных одноосновных кислот: СnH2n+1COOH (или СnH2nO2).

Номенклатура. Распространены тривиальные названия. По правилам IUPAC к названию углеводорода добавляют "-овая кислота".

Изомерия.

1. Для алифатических кислот - изомеризация углеводородного радикала.
2. Для ароматических - изомерия положения заместителя при бензольном кольце.
3. Межклассовая изомерия со сложными эфирами (например, CH3COOH и HCOOCH3).

Таблица. Основные карбоновые кислоты (номенклатура, физические свойства)

Название

Формула
кислоты

tпл.
°C

tкип.
°C

r
г/см 3

Раство-
римость
(г/100мл
H
2 O ;25 °C)

Ka
(при 25°С)

кислоты

её соли
(эфиры)
муравьиная метановая формиат HCOOH

100,5

1,22

1,77 . 10 -4

уксусная этановая ацетат CH 3 COOH

16,8

1,05

1,7 . 10 -5

пропионовая пропановая пропионат CH 3 CH 2 COOH

0,99

1,64 . 10 -5

масляная бутановая бутират CH 3 (CH 2 ) 2 COOH

0,96

1,54 . 10 -5

валериановая пентановая валерат CH 3 (CH 2 ) 3 COOH

0,94

4,97

1,52 . 10 -5

капроновая гексановая гексанат CH 3 (CH 2 ) 4 COOH

0,93

1,08

1,43 . 10 -5

каприловая октановая октаноат CH 3 (CH 2 ) 6 COOH

0,91

0,07

1,28 . 10 -5

каприновая декановая деканоат CH 3 (CH 2 ) 8 COOH

0,89

0,015

1,43 . 10 -5

акриловая пропеновая акрилат CH 2 =CH-COOH

1,05

бензойная бензойная бензоат C 6 H 5 COOH

1,27

0,34

1,43 . 10 -5

щавелевая этандиовая оксалат COOH
I
COOH

189,5
(с разп.)

1,65

K 1 =5,9 . 10 -2
K 2 =6,4 . 10 -5

пальмитиновая гексадекановая пальмитат CH 3 (CH 2 ) 14 COOH

219
(17мм)

0,0007

3,46 . 10 -7

стеариновая октадекановая стеарат CH 3 (CH 2 ) 16 COOH

0,0003

Получение

1. Окисление первичных спиртов и альдегидов (кислородом на катализаторе; KMnO4; K2Cr2O7):

-[O]® R-
- C

OH
первичный
спирт

альдегид

2. Промышленный синтез муравьиной кислоты:
a) каталитическое окисление метана

2CH4 + 3O2 --t°® 2H-COOH + 2H2O

B) нагреванием оксида углерода (II) c гидроксидом натрия

CO + NaOH --p;200°C® H-COONa --H2SO4® H-COOH

3. Промышленный синтез уксусной кислоты:
a) каталитическое окисление бутана

2CH3-CH2-CH2-CH3 + 5O2 --t°® 4CH3COOH + 2H2O

B) нагреванием смеси оксида углерода (II) и метанола на катализаторе под давлением

CH3OH + CO ® CH3COOH

4. Ароматические кислоты синтезируют окислением гомологов бензола:

5 + 6KMnO4 + 9H2SO4 --t°® 5 + K2SO4 + 6MnSO4 + 14H2O

5. Гидролиз функциональных производных (сложных эфиров, ангидридов, галогенангидридов, амидов).

Химические свойства

1. Из-за смещения электронной плотности от гидроксильной группы O-H к сильно поляризованной карбонильной группе C=O молекулы карбоновых кислот способны к электролитической диссоциации:

R-COOH « R-COO- + H+

Сила карбоновых кислот в водном растворе невелика.

2. Карбоновые кислоты обладают свойствами, характерными для минеральных кислот. Они реагируют с активными металлами, основными оксидами, основаниями, солями слабых кислот.

2СH3COOH + Mg ® (CH3COO)2Mg + H2-
2СH3COOH + СaO ® (CH3COO)2Ca + H2O
H-COOH + NaOH ® H-COONa + H2O
2СH3CH2COOH + Na2CO3 ® 2CH3CH2COONa + H2O + CO2-
СH3CH2COOH + NaHCO3 ® CH3CH2COONa + H2O + CO2-

Карбоновые кислоты слабее многих сильных минеральных кислот (HCl, H2SO4 и т.д.) и поэтому вытесняются ими из солей:

СH3COONa + H2SO4(конц.) --t°® CH3COOH + NaHSO4

3. Образование функциональных производных:
a) при взаимодействии со спиртами (в присутствии концентрированной H2SO4) образуются сложные эфиры. Образование сложных эфиров при взаимодействии кислоты и спирта в присутствии минеральных кислот называется реакцией этерификации (ester с латинского "эфир").
Данную реакцию рассмотрим на примере образования метилового эфира уксусной кислоты из уксусной кислоты и метилового спирта:

CH3--OH(уксусная кислота) + HO-CH3(метиловый спирт) ®
® CH3--OCH3(метиловый эфир уксусной кислоты) + H2O

Общая формула сложных эфиров R--OR’ где R и R" - углеводородные радикалы: в сложных эфирах муравьиной кислоты - формиатах -R=H.
Обратной реакцией является гидролиз (омыление) сложного эфира:

CH3--OCH3 + HO-H ® CH3--OH + CH3OH

Как видно, процесс этерификации обратимый:

CH3--OH + HO-CH3 « CH3--OCH3 + H2O

Поэтому при наступлении химического равновесия в реакционной смеси будут находиться как исходные, так и конечные вещества.
Катализатор (ионы водорода) - одинаково ускоряют прямую и обратную реакции, то есть достижение равновесия. Чтобы сдвинуть равновесие в сторону образования эфира, следует брать в избытке исходные кислоту или спирт, или удалять один из продуктов реакции из сферы взаимодействия - например, отгоняя эфир или связывая воду водоотнимающими средствами.
Методом "меченых атомов" с помощью тяжёлого изотопа кислорода показано, что вода при этерификации образуется за счёт атома водорода спирта и гидроксила кислоты:

O-R’ --H+® R-

Учитывая этот факт, предложен следующий механизм реакции этерификации.
Кислород карбонильной группы кислоты захватывает протон, образуя оксониевый катион (I), который находится в равновесии с карбкатионом (II).
Молекула спирта атакует далее карбкатион (II), присоединяется к нему за счёт неподелённой пары электронов кислородного атома и образует оксониевый катион (III), который находится в равновесии с оксониевым катионом (IV).
От катиона (IV) отщепляется молекула воды, в результате чего образуется карбкатион (V), который находится в равновесии с оксониевым катионом (VI).
Оксониевый катион (VI) выбрасывает протон, являющийся катализатором реакции, приводя к молекуле конечного продукта - сложному эфиру.
b) при воздействии водоотнимающих реагентов в результате межмолекулярной дегидратации образуются ангидриды

CH3--OH + H-O--CH3 --(P2O5)® CH3--O--CH3 + H2O

C) при обработке карбоновых кислот пятихлористым фосфором получают хлорангидриды

CH3--OH + PCl5 ® CH3--Cl + POCl3 + HCl

Гидролиз всех функциональных производных карбоновых кислот (ангидридов, хлорангидридов, сложных эфиров и др.) приводит в кислой среде к исходным карбоновым кислотам, а в щелочной среде - к их солям.
4. Галогенирование. При действии галогенов (в присутствии красного фосфора) образуются a-галогензамещённые кислоты:

A
CH3-CH2-COOH --Br2;(P)® CH3- CH-COOH(a-бромпропионовая кислота(2-бромпропановая кислота)) + HBr
I
Br

A- Галогензамещённые кислоты - более сильные кислоты, чем карбоновые, за счёт -I эффекта атома галогена.

Применение

Муравьиная кислота - в медицине, в пчеловодстве, в органическом синтезе, при получении растворителей и консервантов; в качестве сильного восстановителя.

Уксусная кислота - в пищевой и химической промышленности (производство ацетилцеллюлозы, из которой получают ацетатное волокно, органическое стекло, киноплёнку; для синтеза красителей, медикаментов и сложных эфиров).

Масляная кислота - для получения ароматизирующих добавок, пластификаторов и флотореагентов.

Щавелевая кислота - в металлургической промышленности (удаление окалины).

Стеариновая C17H35COOH и пальмитиновая кислота C15H31COOH - в качестве поверхностно-активных веществ, смазочных материалов в металлообработке.

Олеиновая кислота C17H33COOH - флотореагент и собиратель при обогащении руд цветных металлов.

КАРБОНОВЫЕ КИСЛОТЫ

Главной составной частью растительных и животных жиров являются сложные эфиры глицерина и высших жирных кислот (предельных - C15H31COOH пальмитиновой, C17H35COOH - стеариновой; непредельных C17H33COOH - олеиновой; C17H31COOH - линолевой; C17H29COOH - линоленовой).

O
II
CH2-O-
C-R
| O
II
CH-O- C-R’
| O
II
CH2-O- C-R’’

Физические свойства

Жиры, образованные предельными кислотами - твёрдые вещества, а непредельными - жидкие. Все жиры очень плохо растворимы в воде.
Первый синтез жира осуществил Бертло (1854 г.) при нагревании глицерина и стеариновой кислоты:

O
II
CH2-O
H HO-
C-C17H35

CH2-O-
C-C17H35
|

|
| O
II
CH-O
H + HO- C-C17H35

CH-O-
C-C17H35 + 3H2O
|

|
| O
II
CH2-O
H HO- C-C17H35

CH2-O-
C-C17H35

Тристеарин

Химические свойства

1. Гидролиз (омыление) в кислой или в щелочной среде, или под действием ферментов:

В щелочной среде образуются мыла - соли высших жирных кислот (натриевые - твёрдые, калиевые - жидкие).
Все загрязнения гидрофобны, вода их плохо смачивает, поэтому стирать в чистой воде малоэффективно. Молекула кислотного остатка состоит из двух частей: радикала R, который выталкивается водой, и группы -COO-, которая полярна, гидрофильна и легко прилипает к частицам загрязнения. В мыльном растворе вода, выталкивая из своей среды углеводородные радикалы удаляет вместе с ними и группу -СОО-, которая адсорбирована на поверхности загрязняющей частицы, и тем самым загрязнение удаляется вместе с кислотным остатком.
Обычное мыло плохо стирает в жёсткой воде и совсем не стирает в морской воде, так как содержащие в ней ионы кальция и магния дают с высшими кислотами нерастворимые в воде соли:

2RCOO- + Ca ® (RCOO)2Ca¯

В современных моющих средствах часто используют натриевые соли высших алкилсульфокислот, которые не связываются ионами Ca в нерастворимые соли.

2. Гидрирование (гидрогенизация) - процесс присоединения водорода к остаткам непредельных кислот, входящих в состав жира. При этом остатки непредельных кислот переходят в остатки предельных, и жидкие растительные жиры превращаются в твёрдые (маргарин).

3. Количественной характеристикой степени ненасыщенности жиров служит йодное число, показывающее сколько г йода может присоединиться по двойным связям к 100 г жира.
При контакте с воздухом происходит прогоркание жиров, в основе которого лежит окисление по двойным связям (образуются альдегиды и кислоты с короткой цепью) и гидролиз под действием микроорганизмов.

Карбоновые кислоты - органические вещества, молекулы которых содержат одну или несколько карбоксильных групп.

Карбоксильная группа (сокращенно —COOH) - функциональная группа карбоновых кислот - состоит из карбонильной группы и связанной с ней гидроксильной группы.

По числу карбоксильных групп карбоновые кислоты делятся на одноосновные, двухосновные и т.д.

Общая формула одноосновных карбоновых кислот R—COOH. Пример двухосновной кислоты - щавелевая кислота HOOC—COOH.

По типу радикала карбоновые кислоты делятся на предельные (например, уксусная кислота CH 3 COOH), непредельные [например, акриловая кислота CH 2 =CH—COOH , олеиновая CH 3 —(CH 2) 7 —CH=CH—(CH 2) 7 —COOH] и ароматические (например, бензойная C 6 H 5 —COOH).

Изомеры и гомологи

Одноосновные предельные карбоновые кислоты R—COOH являются изомерами сложных эфиров (сокращенно R"—COOR"") с тем же числом атомов углерода. Общая формула и тех, и других C n H 2n O 2 .

г HCOOH
метановая (муравьиная)
CH 3 COOH
этановая (уксусная)
HCOOCH 3
метиловый эфир муравьиной кислоты
CH 3 CH 2 COOH
пропановая (пропионовая)
HCOOCH 2 CH 3
этиловый эфир муравьиной кислоты
CH 3 COOCH 3
метиловый эфир уксусной кислоты
CH 3 (CH 2) 2 COOH
бутановая (масляная)

2-метилпропановая
HCOOCH 2 CH 2 CH 3
пропиловый эфир муравьиной кислоты
CH 3 COOCH 2 CH 3
этиловый эфир уксусной кислоты
CH 3 CH 2 COOCH 3
метиловый эфир пропионовой кислоты
и з о м е р ы

Алгоритм составления названий карбоновых кислот

  1. Найдите главную углеродную цепь - это самая длинная цепь атомов углерода, включающая атом углерода карбоксильной группы.
  2. Пронумеруйте атомы углерода в главной цепи, начиная с атома углерода карбоксильной группы.
  3. Назовите соединение по алгоритму для углеводородов.
  4. В конце названия допишите суффикс "-ов", окончание "-ая" и слово "кислота".

В молекулах карбоновых кислот p -электроны атомов кислорода гидроксильной группы взаимодействуют с электронами -связи карбонильной группы, в результате чего возрастает полярность связи O—H, упрочняется -связь в карбонильной группе, уменьшается частичный заряд (+) на атоме углерода и увеличивается частичный заряд (+) на атоме водорода.

Последнее способствует образованию прочных водородных связей между молекулами карбоновых кислот.

Физические свойства предельных одноосновных карбоновых кислот в значительной степени обусловлены наличием между молекулами прочных водородных связей (более прочных, чем между молекулами спиртов). Поэтому температуры кипения и растворимость в воде у кислот больше, чем у соответствующих спиртов.

Химические свойства кислот

Упрочнение -связи в карбонильной группе приводит к тому, что реакции присоединения для карбоновых кислот нехарактерны.

  1. Горение:

    CH 3 COOH + 2O 2 2CO 2 + 2H 2 O

  2. Кислотные свойства.
    Из-за высокой полярности связи O-H карбоновые кислоты в водном растворе заметно диссоциируют (точнее, обратимо с ней реагируют):

    HCOOH HCOO - + H + (точнее HCOOH + H 2 O HCOO - + H 3 O +)


    Все карбоновые кислоты - слабые электролиты. С увеличением числа атомов углерода сила кислот убывает (из-за снижения полярности связи O-H); напротив, введение атомов галогена в углеводородный радикал приводит к возрастанию силы кислоты. Так, в ряду

    HCOOH CH 3 COOH C 2 H 5 COOH


    сила кислот снижается, а в ряду

    Возрастает.

    Карбоновые кислоты проявляют все свойства, присущие слабым кислотам:

    Mg + 2CH 3 COOH (CH 3 COO) 2 Mg + H 2
    CaO + 2CH 3 COOH (CH 3 COO) 2 Ca + H 2 O
    NaOH + CH 3 COOH CH 3 COONa + H 2 O
    K 2 CO 3 + 2CH 3 COOH 2CH 3 COOK + H 2 O + CO 2

  3. Этерификация (реакция карбоновых кислот со спиртами, приводящая к образованию сложного эфира):

    В реакцию этерификации могут вступать и многоатомные спирты, например, глицерин. Сложные эфиры, образованные глицерином и высшими карбоновыми кислотами (жирными кислотами) - это жиры.

    Жиры представляют собой смеси триглицеридов. Предельные жирные кислоты (пальмитиновая C 15 H 31 COOH, стеариновая C 17 H 35 COOH) образуют твердые жиры животного происхождения, а непредельные (олеиновая C 17 H 33 COOH, линолевая C 17 H 31 COOH и др.) - жидкие жиры (масла) растительного происхождения.

  4. Замещение в углеводородном радикале:

    Замещение протекает в -положение.

    Особенность муравьиной кислоты HCOOH состоит в том, что это вещество - двуфункциональное соединение, оно одновременно является и карбоновой кислотой, и альдегидом:

    Поэтому муравьиная кислота кроме всего прочего реагирует и с аммиачным раствором оксида серебра (реакция серебряного зеркала; качественная реакция):

    HCOOH + Ag 2 O(аммиачный раствор) CO 2 + H 2 O + 2Ag

Получение карбоновых кислот

Химические соединения, которые состоят в том числе и из карбоксильной группы COOH, получили от ученых название карбоновые кислоты. Существует большое количество наименований этих соединений. Они классифицируются по разным параметрам, например, по количеству функциональных групп, наличию ароматического кольца и так далее.

Строение карбоновых кислот

Как уже упоминалось, для того чтобы кислота была карбоновой, она должна иметь карбоксильную группу, которая, в свою очередь, имеет две функциональные части: гидроксил и карбонил. Их взаимодействие обеспечивается ее функциональным сочетанием одного атома углерода с двумя кислородными. Химические свойства карбоновых кислот зависят от того, какое строение имеет эта группа.

За счет карбоксильной группы эти органические соединения можно называть кислотами. Их свойства обуславливаются повышенной способностью иона водорода H+ притягиваться к кислороду, дополнительно поляризуя связь O-H. Также благодаря этому свойству органические кислоты способны диссоциировать в водных растворах. Способность к растворению уменьшается обратно пропорционально росту молекулярной массы кислоты.

Разновидности карбоновых кислот

Химики выделяют несколько групп органических кислот.

Моноосновные карбоновые кислоты состоят из углеродного скелета и только одной функциональной карбоксильной группы. Каждый школьник знает химические свойства карбоновых кислот. 10 класс учебной программы по химии включает в себя непосредственно изучение свойств одноосновных кислот. Двухосновные и многоосновные кислоты имеют в своей структуре две и более карбоксильных групп соответственно.

Также по наличию или отсутствию двойных и тройных связей в молекуле бывают ненасыщенные и насыщенные карбоновые кислоты. Химические свойства и их отличия будут рассмотрены ниже.

Если органическая кислота имеет в составе радикала замещенный атом, то в ее название включается наименование группы-заместителя. Так, если атом водорода замещен галогеном, то в названии кислоты будет присутствовать наименование галогена. Такие же изменения претерпит наименование, если произойдет замещение на альдегидную, гидроксильную или аминогруппы.

Изомерия органических карбоновых кислот

В основе получения мыла лежит реакция синтеза сложных эфиров вышеперечисленных кислот с калиевой или натриевой солью.

Способы получения карбоновых кислот

Способов и методов получения кислот с группой COOH существует множество, но наиболее часто применяются следующие:

  1. Выделение из природных веществ (жиров и прочего).
  2. Окисление моноспиртов или соединений с COH-группой (альдегидов): ROH (RCOH) [O] R-COOH.
  3. Гидролиз тригалогеналканов в щелочи с промежуточным получением моноспирта: RCl3 +NaOH=(ROH+3NaCl)=RCOOH+H2O.
  4. Омыление или гидролиз эфиров кислоты и спирта (сложных эфиров): R−COOR"+NaOH=(R−COONa+R"OH)=R−COOH+NaCl.
  5. Окисление алканов перманганатом (жесткое окисление): R=CH2 [O], (KMnO4) RCOOH.

Значение карбоновых кислот для человека и промышленности

Химические свойства карбоновых кислот имеют большое значение для жизнедеятельности человека. Они чрезвычайно необходимы для организма, так как в большом количестве содержатся в каждой клетке. Метаболизм жиров, белков и углеводов всегда проходит через стадию, на которой получается та или иная карбоновая кислота.

Кроме того, карбоновые кислоты используют при создании лекарственных препаратов. Ни одна фармацевтическая промышленность не может существовать без применения на деле свойств органических кислот.

Немаловажную роль соединения с карбоксильной группой играют и в косметической промышленности. Синтез жира для последующего изготовления мыла, моющих средств и бытовой химии основан на реакции этерификации с карбоновой кислотой.

Химические свойства карбоновых кислот находят отражение в жизнедеятельности человека. Они имеют большое значение для человеческого организма, так как в большом количестве содержатся в каждой клетке. Метаболизм жиров, белков и углеводов всегда проходит через стадию, на которой получается та или иная карбоновая кислота.

.
O

//
Группа атомов -С называется карбоксильной группой или карбоксилом.
\

OH
Органические кислоты, содержащие в молекуле одну карбоксильную группу, являются одноосновными. Общая формула этих кислот RCOOН.

Карбоновые кислоты, содержащие две карбоксильные группы, называются двухосновными. К ним относятся, например, щавелевая и янтарная кислоты.

Существуют и многоосновные карбоновые кислоты, содержащие более двух карбоксильных групп. К ним относится, например, трехосновная лимонная кислота. В зависимости от природы углеводородного радикала карбоновые кислоты делятся на предельные, непредельные, ароматические.

Предельными, или насыщенными, карбоновыми кислотами являются, например, пропановая (пропионовая) кислота или уже знакомая нам янтарная кислота.

Очевидно, что предельные карбоновые кислоты не содержат п -связей в углеводородном радикале.

В молекулах непредельных карбоновых кислот карбоксильная группа связана с ненасыщенным, непредельным углеводородным радикалом, например в молекулах акриловой (пропеновой) СН2=СН-СООН или олеиновой СН3-(СН2)7-СН= СН-(СН2)7-СООН и других кислот.

Как видно из формулы бензойной кислоты, она является ароматической, так как содержит в молекуле ароматическое (бензольное) кольцо.

Номенклатура и изомерия

Общие принципы образования названий карбоновых кислот, как и других органических соединений, мы уже рассматривали. Остановимся подробнее на номенклатуре одно- и двухосновных карбоновых кислот. Название карбоновой кислоты образуется от названия соответствующего алкана (алкана с тем же числом атомов углерода в молекуле) с добавлением суффикса -ов, окончания -ая и слова кислота. Нумерация атомов углерода начинается с карбоксильной группы. Например:

Многие кислоты имеют и исторически сложившиеся, или тривиальные, названия (табл. 6).

После первого знакомства с многообразным и интересным миром органических кислот рассмотрим более подробно предельные одноосновные карбоновые кислоты.

Понятно, что состав этих кислот будет отражаться общей формулой С n Н 2n O2, или С n Н 2n +1 CООН, или RСООН.

Физические свойства предельных одноосновных карбоновых кислот

Низшие кислоты, т. е. кислоты с относительно небольшой молекулярной массой, содержащие в молекуле до четырех атомов углерода, - жидкости с характерным резким запахом (вспомните запах уксусной кислоты). Кислоты, содержащие от 4 до 9 атомов углерода, - вязкие маслянистые жидкости с неприятным запахом; содержащие более 9 атомов углерода в молекуле - твердые вещества, которые не растворяются в воде. Температуры кипения предельных одноосновных карбоно-вых кислот увеличиваются с ростом числа атомов углерода в молекуле и, следовательно, с ростом относительной молекулярной массы. Так, например, температура кипения муравьиной кислоты равна 101 °С, уксусной - 118 °С, пропионовой - 141 °С.

Простейшая карбоновая кислота - муравьиная НСООН, имея небольшую относительную молекулярную массу (46), при обычных условиях является жидкостью с температурой кипения 100,8 °С. В то же время бутан (МR(С4Н10) = 58) в тех же условиях газообразен и имеет температуру кипения -0,5 °С. Это несоответствие температур кипения и относительных молекулярных масс объясняется образованием димеров карбоновых кислот, в которых две молекулы кислоты связаны двумя водородными связями. Возникновение водородных связей становится понятным при рассмотрении строения молекул карбоновых кислот.

Молекулы предельных одноосновных карбоновых кислот содержат полярную группу атомов - карбоксил (подумайте, чем вызвана полярность этой функциональной группы) и практически неполярный углеводородный радикал. Карбоксильная группа притягивается молекулами воды, образуя с ними водородные связи.

Муравьиная и уксусная кислоты растворимы в воде неограниченно. Очевидно, что с увеличением числа атомов в углеводородном радикале растворимость карбоновых кислот снижается.

Зная состав и строение молекул карбоновых кислот, нам будет нетрудно понять и объяснить химические свойства этих веществ.

Химические свойства

Общие свойства, характерные для класса кислот (как органических, так и неорганических), обусловлены наличием в молекулах гидроксильной группы, содержащей сильно полярную связь между атомами водорода и кислорода . Эти свойства вам хорошо известны. Рассмотрим их еще раз на примере растворимых в воде органических кислот.

1. Диссоциация с образованием катионов водорода и анионов кислотного остатка. Более точно этот процесс описывает уравнение, учитывающее участие в нем молекул воды.

Равновесие диссоциации карбоновых кислот смещено влево, подавляющее большинство их - слабые электролиты. Тем не менее кислый вкус, например, муравьиной и уксусной кислот объясняется диссоциацией на катионы водорода и анионы кислотных остатков.

Очевидно, что присутствием в молекулах карбоновых кислот «кислого» водорода, т. е. водорода карбоксильной группы, обусловлены и другие характерные свойства.

2. Взаимодействие с металлами, стоящими в электрохимическом ряду напряжений до водорода. Так, железо восстанавливает водород из уксусной кислоты:

2СН3-СООН + Fe -> (CHgCOO)2Fe + Н2

3. Взаимодействие с основными оксидами с образованием соли и воды:

2R-СООН + СаО -> (R-СОО)2Са + Н20

4. Взаимодействие с гидроксидами металлов с образованием соли и воды (реакция нейтрализации):

R-СООН + NaOH -> R-COONa + Н20 3R-СООН + Са(ОН)2 -> (R-СОО)2Са + 2Н20

5. Взаимодействие с солями более слабых кислот, с образованием последних. Так, уксусная кислота вытесняет стеариновую из стеарата натрия и угольную из карбоната калия.

6. Взаимодействие карбоновых кислот со спиртами с образованием сложных эфиров - уже известная вам реакция эте-рификации (одна из наиболее важных реакций, характерных для карбоновых кислот). Взаимодействие карбоновых кислот со спиртами катализируется катионами водорода.

Реакция этерификации обратима. Равновесие смещается в сторону образования сложного эфира в присутствии водоотни-мающих средств и удалении эфира из реакционной смеси.

В реакции, обратной этерификации, которая называется гидролизом сложного эфира (взаимодействие сложного эфира с водой), образуются кислота и спирт. Очевидно, что реагировать с карбоновыми кислотами, т. е. вступать в реакцию этерификации, могут и многоатомные спирты, например глицерин:

Dсе карбоновые кислоты (кроме муравьиной) наряду с карбоксильной группой содержат в молекулах углеводородный остаток. Безусловно, это не может не сказаться на свойствах кислот, которые определяются характером углеводородного остатка.

7. Реакции присоединения по кратной связи - в них вступают непредельные карбоновые кислоты; например, реакция присоединения водорода - гидрирование. При гидрировании олеиновой кислоты образуется предельная стеариновая кислота.

Непредельные карбоновые кислоты, как и другие ненасыщенные соединения, присоединяют галогены по двойной связи. Так, например, акриловая кислота обесцвечивает бромную воду.

8. Реакции замещения (с галогенами) - в нее способны вступать предельные карбоновые кислоты; например, при взаимодействии уксусной кислоты с хлором могут быть получены различные хлорпроизводные кислоты:


При галогенировании карбоновых кислот, содержащих более одного атома углерода в углеводородном остатке, возможно образование продуктов с различным положением галогена в молекуле. При протекании реакции по свободнорадикальному механизму могут замещаться любые атомы водорода в углеводородном остатке. Если же реакцию проводить в присутствии небольших количеств красного фосфора , то она идет селективно - водород замещается лишь в а -положении (у ближайшего к функциональной группе атома углерода) в молекуле кислоты. Причины такой селективности вы узнаете при изучении химии в высшем учебном заведении.

Карбоновые кислоты образуют различные функциональные производные при замещении гидроксильной группы. При гидролизе этих производных из них вновь образуется карбоновая кислота.

Хлорангидрид карбоновой кислоты можно получить действием на кислоту хлорида фосфора(ІІІ) или тионилхлорида (SОСl 2). Ангидриды карбоновых кислот получают взаимодействием хлор-ангидридов с солями карбоновых кислот. Сложные эфиры образуются в результате этерификации карбоновых кислот спиртами. Этерификация катализируется неорганическими кислотами.

Эту реакцию инициирует протонирование карбоксильной группы - взаимодействие катиона водорода (протона) с неподеленной электронной парой атома кислорода. Протонирование карбоксильной группы влечет за собой увеличение положительного заряда на атоме углерода в ней:


Способы получения

Карбоновые кислоты могут быть получены окислением первичных спиртов и альдегидов.

Ароматические карбоновые кислоты образуются при окислении гомологов бензола .

Гидролиз различных производных карбоновых кислот также приводит к получению кислот. Так, при гидролизе сложного эфира образуются спирт и карбоновая кислота. Как уже говорилось выше, реакции этерификации и гидролиза, катарилизируемые кислотой, обратимы. Гидролиз сложного эфира под действием водного раствора щелочи протекает необратимо, в этом случае из сложного эфира образуется не кислота, а ее соль. При гидролизе нитрилов сначала образуются амиды, которые затем превращаются в кислоты. Карбоновые кислоты образуются при взаимодействии магний-органических соединений с оксидом углерода(IV).

Отдельные представители карбоновых кислот и их значение

Муравьиная (метановая) кислота НСООН - жидкость с резким запахом и температурой кипения 100,8 °С, хорошо растворима в воде. Муравьиная кислота ядовита, при попадании на кожу вызывает ожоги! Жалящая жидкость, выделяемая муравьями, содержит эту кислоту. Муравьиная кислота обладает дезинфицирующим свойством и поэтому находит свое применение в пищевой, кожевенной и фармацевтической промышленности, медицине. Она также используется при крашении тканей и бумаги.

Уксусная (этановая) кислота СН3СООН - бесцветная жидкость с характерным резким запахом, смешивается с водой в любых отношениях. Водные растворы уксусной кислоты поступают в продажу под названием уксуса (3-5%-ный раствор) и уксусной эссенции (70-80%-ный раствор) и широко используются в пищевой промышленности. Уксусная кислота - хороший растворитель многих органических веществ и поэтому используется при крашении, в кожевенном производстве, в лакокрасочной промышленности. Кроме этого, уксусная кислота является сырьем для получения многих важных в техническом отношении органических соединений: например, на ее основе получают вещества, используемые для борьбы с сорняками, - гербициды.

Уксусная кислота является основным компонентом винного уксуса, характерный запах которого обусловлен именно ей. Она продукт окисления этанола и образуется из него при хранении вина на воздухе.

Важнейшими представителями высших предельных одноосновных кислот являются пальмитиновая С15Н31СООН и стеариновая С17Н35СООН кислоты. В отличие от низших кислот эти вещества твердые, плохо растворимые в воде.

Однако их соли - стеараты и пальмитаты - хорошо растворимы и обладают моющим действием, поэтому их еще называют мылами. Понятно, что эти вещества производят в больших масштабах.

Из непредельных высших карбоновых кислот наибольшее значение имеет олеиновая кислота С17Н33СООН, или (СН2)7СООН. Это маслоподоб-ная жидкость без вкуса и запаха. Широкое применение в технике находят ее соли.

Простейшим представителем двухосновных карбоновых кислот является щавелевая (этандиовая) кислота НООС-СООН, соли которой встречаются во многих растениях, например в щавеле и кислице. Щавелевая кислота - это бесцветное кристаллическое вещество, хорошо растворяется в воде. Она применяется при полировке металлов, в деревообрабатывающей и кожевенной промышленности.

1. Непредельная элаидиновая кислота С17Н33СООН является транс-изомером олеиновой кислоты. Составьте структурную формулу этого вещества.

2. Составьте уравнение реакции гидрирования олеиновой кислоты. Назовите продукт этой реакции.

3. Составьте уравнение реакции горения стеариновой кислоты. Какой объем кислорода и воздуха (н. у.) потребуется для сжигания 568 г стеариновой кислоты?

4. Смесь твердых жирных кислот - пальмитиновой и стеариновой - называют стеарином (именно из него изготавливают стеариновые свечи). Какой объем воздуха (н. у.) потребуется для сжигания двухсотграммовой стеариновой свечи, если стеарин содержит равные массы пальмитиновой и стеариновой кислот? Какой объем углекислого газа (н. у.) и масса воды образуются при этом?

5. Решите предыдущую задачу при условии, что свеча содержит равные количества (одинаковое число молей) стеариновой и пальмитиновой кислот.

6. Для удаления пятен ржавчины их обрабатывают раствором уксусной кислоты. Составьте молекулярные и ионные уравнения происходящих при этом реакций, учитывая, что ржавчина содержит оксид и гидроксид железа(III) - Fе2O3 и Fе(ОН)3. Почему такие пятна не удаляются водой? Почему они исчезают при обработке раствором кислоты?

7. Добавляемую в бездрожжевое тесто пищевую (питьевую) соду МаНС03 предварительно «гасят» уксусной кислотой. Проделайте дома эту реакцию и составьте ее уравнение, зная, что угольная кислота слабее уксусной. Объясните образование пены.

8. Зная, что хлор более электроотрицателен, чем углерод , расположите следующие кислоты: уксусную, пропионо-вую, хлоруксусную, дихлоруксусную и трихлоруксусную кислоты в порядке усиления кислотных свойств. Обоснуйте свой результат.

9. Чем можно объяснить, что муравьиная кислота вступает в реакцию «серебряного зеркала»? Составьте уравнение этой реакции. Какой газ может выделяться при этом?

10. При взаимодействии 3 г предельной одноосновной карбо-новой кислоты с избытком магния выделилось 560 мл (н. у.) водорода. Определите формулу кислоты.

11. Приведите уравнения реакции, с помощью которых можно описать химические свойства уксусной кислоты. Назовите продукты этих реакций.

12. Предложите несложный лабораторный способ, с помощью которого можно распознать пропановую и акриловую кислоты.

13. Составьте уравнение реакции получения метилформиата - сложного эфира метанола и муравьиной кислоты. В каких условиях следует проводить эту реакцию?

14. Составьте структурные формулы веществ, имеющих состав С3Н602. К каким классам веществ их можно отнести? Приведите уравнения реакций, характерных для каждого из них.

15. Вещество А - изомер уксусной кислоты - не растворяется в воде, однако может подвергаться гидролизу. Какова структурная формула вещества А? Назовите продукты его гидролиза.

16. Составьте структурные формулы следующих веществ:

а) метилацетат;
б) щавелевая кислота;
в) муравьиная кислота;
г) дихлоруксусная кислота;
д) ацетат магния;
е) этилацетат;
ж) этилформиат;
з) акриловая кислота.

17*. Образец предельной одноосновной органической кислоты массой 3,7 г нейтрализовали водным раствором гидрокарбоната натрия. При пропускании выделившегося газа через известковую воду было получено 5,0 г осадка. Какая кислота была взята и каков объем выделившегося газа?

Карбоновые кислоты в природе

Карбоновые кислоты очень часто встречается в природе. Они содержится в фруктах и растениях. Они присутствуют в хвое, поте, моче и соке крапивы. Вы знаете, оказывается, что основная масса кислот образуют сложные эфиры, которые обладают запахами. Так запах молочной кислоты, которая содержится в поте человека, привлекает комаров, они ее чувствуют на довольно-таки значительном расстоянии. Поэтому, сколько бы вы не пытались отогнать назойливого комара, он все равно хорошо чувствует свою жертву. Кроме человеческого пота, молочная кислота содержится в соленых огурцах и квашеной капусте.

А самки обезьян, чтобы привлечь к себе самца, выделяет уксусную и пропионовую кислоту. Чувствительный, собачий нос способен услышать запах масляной кислоты, которая имеет концентрацию 10–18 г/см3.

Многие виды растений способны выделять выделяют уксусную и масляную кислоту. А некоторые сорные растения этим пользуются и выделяя вещества, устраняют своих конкурентов, подавляя их рост, а иногда и вызывая их гибель.

Кислотой пользовались и индейцы. Чтобы уничтожить врага, они смачивали стрелы смертельным ядом, который оказался производным от уксусной кислоты.

И тут возникает закономерный вопрос, представляют ли кислоты опасность для здоровья человека? Ведь широко распространенная в природе щавелевая кислота, которая содержится в щавеле, апельсинах, смородине и малине, почему-то не нашла применения в пищевой промышленности. Оказывается, щавелевая кислота в двести раз сильнее уксусной кислоты, и способна даже разъедать посуду, а ее соли, накапливаясь в организме человека, образовывать камни.

Кислоты нашли широкое применение во всех сферах человеческой жизни. Их применяют в медицине, косметологии, пищевой промышленности, сельском хозяйстве и используют для бытовых нужд.

В медицинских целях используются такие органические кислоты, как молочная, винная, аскорбиновая. Наверное, каждый из вас употреблял для укрепления организма витамин С – это как раз и есть аскорбиновая кислота. Она не только помогает укрепить иммунитет, но и обладает способностью выводить из организма канцерогены и токсины. Молочную кислоту используют для прижигания, так как она обладает высокой гигроскопичностью. А вот винная кислота действует, как легкое слабительное, как противоядие при отравлениях щелочами и как компонент, необходимый для приготовления плазмы при переливании крови.

А вот поклонникам косметических процедур, следует знать, что содержащиеся в цитрусовых фруктах, фруктовые кислоты, благоприятно влияют на кожу, так, как проникая вглубь, они способны ускорять процесс обновления кожи. Кроме этого, запах цитрусовых имеет тонизирующее влияние на нервную систему.

Замечали ли вы, что такие ягоды, как клюква и брусника долго хранятся и остаются свежими. А знаете почему? Оказывается, в них содержится бензойная кислота, которая является прекрасным консервантом.

А вот в сельском хозяйстве широкое применение нашла янтарная кислота, так как с ее помощью можно повысить урожайность культурных растений. Также она способна стимулировать рост растений и ускорять их развитие.