Простейшие тригонометрические неравенства вида sin x>a — основа для решения более сложных тригонометрических неравенств.

Рассмотрим решение простейших тригонометрических неравенств вида sin x>a на единичной окружности.

1) при 0

С помощью ассоциации косинус-колобок (оба начинаются с ко-, оба «кругленькие»), вспоминаем, что косинус — это x, соответственно, синус — y. Отсюда строим график y=a — прямую, параллельную оси ox. Если неравенство строгое, точки пересечения единичной окружности и прямой y=a выколотые, если неравенство нестрогое — точки закрашиваем (как легко запомнить, когда точка выколотая, когда — закрашенная, смотрите ). Наибольшие затруднение при решении простейших тригонометрических неравенств вызывает правильное нахождение точек пересечения единичной окружности и прямой y=a.

Первую из точек найти несложно — это arcsin a. Определяем путь, по которому из первой точки идем ко второй. На прямой y=a sinx=a, сверху, над прямой, sin x>a, а ниже, под прямой, sin xa, нам нужен верхний путь. Таким образом, от первой точки, arcsin a, ко второй, мы идем против часовой стрелки, то есть в сторону увеличения угла. Мы не доходим до п. На сколько не доходим? На arcsin a. Раз не дошли до п, то вторая точка меньше п, значит, чтобы ее найти, надо из п вычесть arcsina. Решением неравенства sin x>a в этом случае является промежуток от arcsin a до п-arcsin a. Поскольку период синуса равен 2п, чтобы учесть все решения неравенства (а таких промежутков — бесконечное множество), к каждому из концов интервала прибавляем 2пn, где n — целое число (n принадлежит Z).

2) a=0, то есть sin x>0

В этом случае первая точка промежутка — 0, вторая — п. К обоим концам промежутка с учетом периода синуса прибавляем 2пn.

3) при a=-1, то есть sinx>-1

В этом случае первая точка -п/2, а чтобы попасть во вторую, обходим всю окружность против часовой стрелки. Попадаем в точку -п/2+2п=3п/2. Чтобы учесть все интервалы, являющиеся решением данного неравенства, к обоим концам прибавляем 2пn.

4) sinx>-a, при 0

Первая точка — как обычно, arcsin(-a)=-arcsina. Чтобы попасть во вторую точку, идем верхним путем, то есть в сторону увеличения угла.

На этот раз мы за п переходим. На сколько переходим? На arcsin x. Значит, вторая точка — это п+arcsin x. Почему нет минуса? Потому что минус в записи -arcsin a обозначает движение по часовой стрелки, а мы шли против. И в заключении, к каждому концу интервала прибавляем 2пn.

5) sinx>a, если а>1.

Единичная окружность лежит целиком под прямой y=a. Нет ни одной точки выше прямой. Значит, решений нет.

6) sinx>-a, где a>1.

В этом случае вся единичная окружность целиком лежит над прямой y=a. Поэтому любая точка удовлетворяет условию sinx>a. Значит, x — любое число.

И здесь x — любое число, поскольку точки -п/2+2пn входят в решение, в отличие от строгого неравенства sinx>-1. Ничего исключать не надо.

Единственной точкой на окружности, удовлетворяющей данному условию, является п/2. С учетом периода синуса, решением данного неравенства является множество точек x=п/2+2пn.

Например, решить неравенство sinx>-1/2:

Неравенства, содержащие тригонометрические функции, при решении сводятся к простейшим неравенствам вида cos(t)>a, sint(t)=a и подобным. И уже простейшие неравенства решаются. Рассмотрим на различных примерах способы решения простейших тригонометрических неравенств.

Пример 1 . Решить неравенство sin(t) > = -1/2.

Рисуем единичную окружность. Так как sin(t) по определению - это координата y, отмечаем на оси Оу точку у =-1/2. Проводим через неё прямую, параллельную оси Ох. В местах пересечения прямой с графиком единичной окружности отмечаем точки Pt1 и Pt2. Соединяем двум отрезками начало координат с точками Pt1 и Pt2.

Решением данного неравенства будут все точки единичной окружности расположенные выше данных точек. Другими словами решением будет являться дуга l.. Теперь необходимо указать условия, при которых произвольная точка будет принадлежать дуге l.

Pt1 лежит в правой полуокружности, её ордината равна -1/2, тогда t1=arcsin(-1/2) = - pi/6. Для описания точки Pt1 можно записать следующую формулу:
t2 = pi - arcsin(-1/2) = 7*pi/6. В итоге получаем для t следующее неравенство:

Мы сохраняем знаки неравенств. А так как функция синус функция периодичная, значит решения будут повторяться через каждые 2*pi. Это условие добавляем к полученному неравенству для t и записываем ответ.

Ответ: -pi/6+2*pi*n < = t < = 7*pi/6 + 2*pi*n, при любом целом n.

Пример 2. Решить неравенство cos(t) <1/2.

Нарисуем единичную окружность. Так как согласно определению cos(t) это координата х, отмечаем на грфике на оси Ох точку x = 1/2.
Проводим через эту точку прямую, параллельную оси Оу. В местах пересечения прямой с графиком единичной окружности отмечаем точки Pt1 и Pt2. Соединяем двум отрезками начало координат с точками Pt1 и Pt2.

Решениями будут все точки единичной окружности, которые принадлежать дуге l.. Найдем точки t1 и t2.

t1 = arccos(1/2) = pi/3.

t2 = 2*pi - arccos(1/2) = 2*pi-pi/3 = 5*pi/6.

Получили неравенство для t: pi/3

Так как косинус - это функция периодичная, то решения будут повторяться через каждые 2*pi. Это условие добавляем к полученному неравенству для t и записываем ответ.

Ответ: pi/3+2*pi*n

Пример 3. Решить неравенство tg(t) < = 1.

Период тангенса равняется pi. Найдем решения, которые принадлежат промежутку (-pi/2;pi/2) правая полуокружность. Далее воспользовавшись периодичностью тангенса, запишем все решения данного неравенства. Нарисуем единичную окружность и отметим на ней линию тангенсов.

Если t будет являться решение неравенства, то ордината точки Т = tg(t) должна быть меньше или равна 1. Множество таких точек будет составлять луч АТ. Множество точек Pt, которые будут соответствовать точкам этого луча - дуга l. Причем, точка P(-pi/2) не принадлежит этой дуге.

1.5 Тригонометрические неравенства и методы их решения

1.5.1 Решение простейших тригонометрических неравенств

Большинство авторов современных учебников по математике предлагают начать рассмотрение данной темы с решения простейших тригонометрических неравенств. Принцип решения простейших тригонометрических неравенств основан на знаниях и умениях определять на тригонометрической окружности значения не только основных тригонометрических углов, но и других значений.

Между тем, решение неравенств вида , , , можно осуществлять следующим образом: сначала находим какой-нибудь промежуток (), на котором выполняется данное неравенство, а затем записываем окончательный ответ, добавив к концам найденного промежутка число кратное периоду синуса или косинуса: (). При этом значение находится легко, т.к. или . Поиск же значения опирается на интуицию учащихся, их умение заметить равенство дуг или отрезков, воспользовавшись симметрией отдельных частей графика синуса или косинуса. А это довольно большому числу учащихся иногда оказывается не под силу. В целях преодоления отмеченных трудностей в учебниках в последние годы применялся разный подход к решению простейших тригонометрических неравенств, но улучшения в результатах обучения это не давало.

Мы на протяжении ряда лет для нахождения решения тригонометрических неравенств довольно успешно применяем формулы корней соответствующих уравнений.

Изучение данной темы осуществляем таким образом:

1. Строим графики и у = а, считая, что .

Затем записываем уравнение и его решение . Придавая n 0; 1; 2, находим три корня составленного уравнения: . Значения являются абсциссами трёх последовательных точек пересечения графиков и у = а. очевидно, что всегда на интервале () выполняется неравенство , а на интервале () – неравенство .

Добавив к концам этих промежутков число, кратное периоду синуса, в первом случае получим решение неравенства в виде: ; а во втором случае – решение неравенства в виде:

Только в отличие от синуса из формулы , являющейся решением уравнения , при n = 0 получаем два корня , а третий корень при n = 1 в виде . И опять являются тремя последовательными абсциссами точек пересечения графиков и . В интервале () выполняется неравенство , в интервале () – неравенство

Теперь нетрудно записать решения неравенств и . В первом случае получим: ;

а во втором: .

Подведём итог. Чтобы решить неравенство или , надо составить соответствующее уравнение и решить его. Из полученной формулы найти корни и , и записать ответ неравенства в виде: .

При решении неравенств , из формулы корней соответствующего уравнения находим корни и , и записываем ответ неравенства в виде: .

Данный приём позволяет научить решать тригонометрические неравенства всех учащихся, т.к. этот приём полностью опирается на умения, которыми учащиеся владеют прочно. Это умения решать простейшие и находить значение переменной по формуле. Кроме того, становится совершенно необязательным тщательное прорешивание под руководством учителя большого количества упражнений для того, чтобы продемонстрировать всевозможные приёмы рассуждений в зависимости от знака неравенства, значения модуля числа a и его знака. Да и сам процесс решения неравенства становится кратким и, что очень важно, единообразным.

Ещё одним из преимуществ данного способа является то, что он позволяет легко решать неравенства даже в том случае, когда правая часть не является табличным значением синуса или косинуса.

Продемонстрируем это на конкретном примере. Пусть требуется решить неравенство . Составим соответствующее уравнение и решим его:

Найдём значения и .

При n = 1

При n = 2

Записываем окончательный ответ данного неравенства:

В рассмотренном примере решения простейших тригонометрических неравенств недостаток может быть только один – наличие определенной доли формализма. Но если всё оценивать только с этих позиций, то тогда можно будет обвинить в формализме и формулы корней квадратного уравнения, и всех формул решения тригонометрических уравнений, и многое другое.

Предложенный метод хоть и занимает достойное место в формировании умений и навыков решения тригонометрических неравенств, но нельзя и преуменьшать важность и особенности других методов решения тригонометрических неравенств. К таковым относится и метод интервалов.

Рассмотрим его сущность.



Комплект под редакцией А.Г. Мордковича, хотя оставлять без внимания остальные учебники тоже не стоит. § 3. Методика преподавания темы «Тригонометрические функции» в курсе алгебры и начал анализа В изучении тригонометрических функций в школе можно выделить два основных этапа: ü Первоначальное знакомство с тригонометрическими функциями...

Проведении исследования были решены следующие задачи: 1) Проанализированы действующие учебники алгебры и начала математического анализа для выявления представленной в них методики решения иррациональных уравнений и неравенств. Проведенный анализ позволяет сделать следующие выводы: ·в средней школе недостаточное внимание уделяется методам решения различных иррациональных уравнений, в основном...

Алгоритм решения простейших тригонометрических неравенств и распознавание способов решения тригонометрических неравенств.

Учителя высшей квалификационной категории:

Ширко Ф.М. п. Прогресс, МОБУ-СОШ №6

Санкина Л.С. г. Армавир, ЧОУ СОШ «Новый путь»

Не существует универсальных приемов преподавания дисциплин естественно-математического цикла. Каждый учитель находит свои, приемлемые только для него способы преподавания.

Наш многолетний опыт преподавания показывает, что учащиеся легче усваивают материал, требующий концентрации внимания и сохранения в памяти большого объема информации, если они научены использовать в своей деятельности алгоритмы на начальной стадии обучения сложной темы. Такой темой на наш взгляд, является тема решение тригонометрических неравенств.

Итак, перед тем, как мы приступим с учащимися к выявлению приемов и способов решения тригонометрических неравенств, отрабатываем и закрепляем алгоритм решения простейших тригонометрических неравенств.

Алгоритм решения простейших тригонометрических неравенств

    Отмечаем на соответствующей оси точки (для sin x – ось ОУ, для cos x – ось ОХ )

    Восстанавливаем перпендикуляр к оси, который пересечет окружность в двух точках.

    Первой на окружности подписываем точку, которая принадлежит промежутку области значений аркфункции по определению.

    Начиная от подписанной точки, заштриховываем дугу окружности, соответствующую заштрихованной части оси.

    Обращаем особое внимание на направление обхода. Если обход совершается по часовой стрелке (т.е. присутствует переход через 0), то вторая точка на окружности будет отрицательной, если против часовой стрелки – положительной.

    Записываем ответ в виде промежутка с учетом периодичности функции.

Рассмотрим работу алгоритма на примерах.

1) sin ≥ 1/2;

Решение:

    Изображаем единичную окружность.;

    Отмечаем на оси ОУ точку ½.

    Восстанавливаем перпендикуляр к оси,

который пересечет окружность в двух точках.

    По определению арксинуса первой отмечаем

точку π/6.

    Заштриховываем ту часть оси, которая соответствует

данному неравенству, выше точки ½.

    Заштриховываем дугу окружности, соответствующую заштрихованной части оси.

    Обход совершается против часовой стрелки, получили точку 5π/6.

    Записываем ответ в виде промежутка с учетом периодичности функции;

Ответ: x ;[π/6 + 2πn , 5π/6 + 2πn ], n  Z.

Простейшее неравенство решается по тому же алгоритму, если в записи ответа нет табличного значения.

Учащиеся, на первых уроках решая неравенства у доски, проговаривают каждый шаг алгоритма вслух.

2) 5 cos x – 1 ≥ 0;

Решение: у

5 cos x – 1 ≥ 0;

cos x ≥ 1/5;

    Изображаем единичную окружность.

    Отмечаем на оси ОХ точку с координатой 1/5.

    Восстанавливаем перпендикуляр к оси, который

пересечет окружность в двух точках.

    Первой на окружности подписываем точку, которая принадлежит промежутку области значений арккосинуса по определению (0;π).

    Заштриховываем ту часть оси, которая соответствует данному неравенству.

    Начиная от подписанной точки arccos 1/5, заштриховываем дугу окружности, соответствующую заштрихованной части оси.

    Обход совершается по часовой стрелке (т.е. присутствует переход через 0), значит, вторая точка на окружности будет отрицательной -arccos 1/5.

    Записываем ответ в виде промежутка с учетом периодичности функции, от меньшего значения к большему.

Ответ: x  [-arccos 1/5 + 2πn , arccos 1/5 + 2πn ], n  Z.

Совершенствованию умения решать тригонометрические неравенства способствуют вопросы: «Каким способом будем решать группу неравенств?»; «Чем одно неравенство отличается от другого?»; «Чем одно неравенство похоже на другое?»; Как изменился бы ответ, если было дано строгое неравенство?»; Как изменился бы ответ, если было вместо знака «» стоял знак «

Задание на анализ списка неравенств с позиций способов их решения позволяет отработать их распознавание.

Учащимся предлагаются неравенства, которые необходимо решить на уроке.


Вопрос: Выделите неравенства, которые требуют применения равносильных преобразований при сведении тригонометрического неравенства к простейшему?

Ответ 1, 3, 5.

Вопрос: Назовите неравенства, в которых требуется рассмотреть сложный аргумент как простой?

Ответ: 1, 2, 3, 5, 6.

Вопрос: Назовите неравенства, где можно применить тригонометрические формулы?

Ответ: 2, 3, 6.

Вопрос: Назовите неравенства, где можно применить метод введения новой переменной?

Ответ: 6.

Задание на анализ списка неравенств с позиций способов их решения позволяет отработать их распознавание. При формировании умений важно выделять этапы его выполнения и формулировать их в общем виде, что и представлено в алгоритме решения простейших тригонометрических неравенств.