Синус, косинус, тангенс, котангенс гэсэн үндсэн тригонометрийн функцүүдийн хоорондын хамаарлыг өгөв. тригонометрийн томъёо. Тригонометрийн функцүүдийн хооронд маш олон холболт байдаг тул энэ нь элбэг дэлбэг байдлыг тайлбарлаж байна тригонометрийн томъёо. Зарим томъёонууд хоорондоо холбогддог тригонометрийн функцуудижил өнцөг, бусад нь - олон өнцгийн функцууд, бусад нь - градусыг багасгах боломжийг олгодог, дөрөвдүгээрт - бүх функцийг хагас өнцгийн тангенсаар илэрхийлэх гэх мэт.

Энэ нийтлэлд бид тригонометрийн ихэнх асуудлыг шийдвэрлэхэд хангалттай бүх үндсэн тригонометрийн томьёог дарааллаар нь жагсаах болно. Цээжлэх, ашиглахад хялбар болгох үүднээс бид тэдгээрийг зориулалтын дагуу бүлэглэж, хүснэгтэд оруулна.

Хуудасны навигаци.

Тригонометрийн үндсэн шинж чанарууд

Үндсэн тригонометрийн ижил төстэй байдал Нэг өнцгийн синус, косинус, тангенс, котангенс хоорондын хамаарлыг тодорхойлох. Эдгээр нь синус, косинус, тангенс, котангенсийн тодорхойлолт, мөн нэгж тойргийн тухай ойлголтоос үүдэлтэй. Эдгээр нь нэг тригонометрийн функцийг өөр ямар ч хэлбэрээр илэрхийлэх боломжийг олгодог.

Эдгээр тригонометрийн томьёо, тэдгээрийн гарал үүсэл, хэрэглээний жишээнүүдийн дэлгэрэнгүй тайлбарыг нийтлэлээс үзнэ үү.

Бууруулах томъёо




Бууруулах томъёоСинус, косинус, тангенс, котангенсийн шинж чанаруудаас дагах, өөрөөр хэлбэл тэдгээр нь тригонометрийн функцүүдийн үечилсэн шинж чанар, тэгш хэмийн шинж чанар, түүнчлэн өгөгдсөн өнцгөөр шилжих шинж чанарыг тусгадаг. Эдгээр тригонометрийн томъёонууд нь дурын өнцгөөр ажиллахаас тэгээс 90 градусын өнцөгтэй ажиллахад шилжих боломжийг олгодог.

Эдгээр томъёоны үндэслэл, тэдгээрийг цээжлэх мнемоник дүрэм, тэдгээрийн хэрэглээний жишээг нийтлэлээс судалж болно.

Нэмэлт томъёо

Тригонометрийн нэмэх томъёоХоёр өнцгийн нийлбэр эсвэл зөрүүний тригонометрийн функцууд тэдгээр өнцгийн тригонометрийн функцээр хэрхэн илэрхийлэгдэж байгааг харуул. Эдгээр томьёо нь дараах тригонометрийн томьёог гаргах үндэс болдог.

Давхар, гурвалсан гэх мэт томьёо. өнцөг



Давхар, гурвалсан гэх мэт томьёо. өнцөг (тэдгээрийг олон өнцгийн томъёо гэж нэрлэдэг) нь давхар, гурвалсан гэх мэт тригонометрийн функцуудыг хэрхэн харуулдаг. өнцөг () нь нэг өнцгийн тригонометрийн функцээр илэрхийлэгдэнэ. Тэдний гарал үүсэл нь нэмэлт томъёонд суурилдаг.

Илүү нарийвчилсан мэдээллийг нийтлэлийн томъёонд давхар, гурав дахин гэх мэтээр цуглуулсан болно. өнцөг

Хагас өнцгийн томъёо

Хагас өнцгийн томъёоХагас өнцгийн тригонометрийн функцүүд бүхэл өнцгийн косинусаар хэрхэн илэрхийлэгдэж байгааг харуул. Эдгээр тригонометрийн томьёо нь давхар өнцгийн томъёоноос гардаг.

Тэдний дүгнэлт, хэрэглээний жишээг нийтлэлээс олж болно.

Зэрэг бууруулах томъёо


Зэрэг бууруулах тригонометрийн томъёо-аас шилжилтийг хөнгөвчлөх зорилготой юм байгалийн зэрэгтригонометрийн функцууд нь синус ба косинусыг нэгдүгээр зэрэгтэй, гэхдээ олон өнцөгт. Өөрөөр хэлбэл, тэдгээр нь тригонометрийн функцүүдийн хүчийг эхнийх хүртэл багасгах боломжийг олгодог.

Тригонометрийн функцүүдийн нийлбэр ба ялгааны томъёо


Гол зорилго тригонометрийн функцүүдийн нийлбэр ба ялгааны томъёоТригонометрийн илэрхийллийг хялбарчлахад маш хэрэгтэй функцүүдийн бүтээгдэхүүн рүү очих явдал юм. Эдгээр томьёог мөн тригонометрийн тэгшитгэлийг шийдвэрлэхэд өргөн ашигладаг бөгөөд тэдгээр нь синусын болон косинусын нийлбэр, зөрүүг хүчин зүйлээр тооцох боломжийг олгодог.

Синус, косинус ба синусын косинусын үржвэрийн томъёо


Тригонометрийн функцүүдийн үржвэрээс нийлбэр эсвэл зөрүү рүү шилжих шилжилтийг синус, косинус, синусыг косинусаар үржүүлэх томъёог ашиглан гүйцэтгэнэ.

  • Башмаков М.И.Алгебр ба шинжилгээний эхлэл: Сурах бичиг. 10-11 ангийн хувьд. дундаж сургууль - 3 дахь хэвлэл. - М.: Боловсрол, 1993. - 351 х.: өвчтэй. - ISBN 5-09-004617-4.
  • Алгебрба шинжилгээний эхлэл: Proc. 10-11 ангийн хувьд. ерөнхий боловсрол байгууллагууд / A. N. Kolmogorov, A. M. Abramov, P. Dudnitsyn болон бусад; Эд. A. N. Kolmogorov - 14-р хэвлэл - М.: Боловсрол, 2004. - 384 х.: ISBN 5-09-013651-3.
  • Гусев В.А., Мордкович А.Г.Математик (техникийн сургуульд элсэгчдэд зориулсан гарын авлага): Proc. тэтгэмж.- М.; Илүү өндөр сургууль, 1984.-351 х., өвчтэй.
  • Ухаалаг оюутнуудын зохиогчийн эрх

    Бүх эрх хуулиар хамгаалагдсан.
    Зохиогчийн эрхийн хуулиар хамгаалагдсан. Www.site-ийн аль ч хэсэг, үүнд дотоод материалТэгээд гадаад дизайн, зохиогчийн эрх эзэмшигчийн урьдчилан бичгээр зөвшөөрөл авалгүйгээр ямар ч хэлбэрээр хуулбарлахыг хориглоно.

      "Нүглийн" хүсэлтийг энд дахин чиглүүлсэн; бусад утгыг мөн үзнэ үү. "сек" хүсэлтийг энд дахин чиглүүлсэн; бусад утгыг мөн үзнэ үү. "Sine" хүсэлтийг энд дахин чиглүүлсэн; бусад утгыг бас үзнэ үү... Википедиа

      Цагаан будаа. 1 Тригонометрийн функцүүдийн график: синус, косинус, тангенс, секант, косекант, котангенс Тригонометрийн функцууд нь энгийн функцүүдийн нэг төрөл юм. Эдгээрт ихэвчлэн синус (sin x), косинус (cos x), тангенс (tg x), котангенс (ctg x), ... ... Wikipedia орно.

      Цагаан будаа. 1 Тригонометрийн функцүүдийн график: синус, косинус, тангенс, секант, косекант, котангенс Тригонометрийн функцууд нь энгийн функцүүдийн нэг төрөл юм. Эдгээрт ихэвчлэн синус (sin x), косинус (cos x), тангенс (tg x), котангенс (ctg x), ... ... Wikipedia орно.

      Цагаан будаа. 1 Тригонометрийн функцүүдийн график: синус, косинус, тангенс, секант, косекант, котангенс Тригонометрийн функцууд нь энгийн функцүүдийн нэг төрөл юм. Эдгээрт ихэвчлэн синус (sin x), косинус (cos x), тангенс (tg x), котангенс (ctg x), ... ... Wikipedia орно.

      Цагаан будаа. 1 Тригонометрийн функцүүдийн график: синус, косинус, тангенс, секант, косекант, котангенс Тригонометрийн функцууд нь энгийн функцүүдийн нэг төрөл юм. Эдгээрт ихэвчлэн синус (sin x), косинус (cos x), тангенс (tg x), котангенс (ctg x), ... ... Wikipedia орно.

      Геодезийн хэмжилт (XVII зуун) ... Википедиа

      Тригонометрийн хувьд бор өнгийн хагас өнцгийн томьёо нь бор өнцгийг бүтэн өнцгийн тригонометрийн функцуудтай холбодог: Энэ томьёоны хувилбарууд дараах байдалтай байна... Wikipedia

      - (Грек хэлнээс τρίγονο (гурвалжин) ба Грекийн μετρειν (хэмжих), өөрөөр хэлбэл гурвалжны хэмжилт) нь тригонометрийн функцууд болон тэдгээрийн геометрийн хэрэглээг судалдаг математикийн салбар юм. Энэ нэр томьёо анх 1595 онд... ... Википедиа гэж гарч ирсэн

      - (лат. solutio triangulorum) тригонометрийн үндсэн асуудлын шийдэл гэсэн утгатай түүхэн нэр томьёо: гурвалжингийн (тал, өнцөг гэх мэт) мэдэгдэж буй өгөгдлийг ашиглан түүний үлдсэн шинж чанарыг олох. Гурвалжин нь... ... Википедиа дээр байрлаж болно

    Номууд

    • Хүснэгтийн багц. Алгебр ба шинжилгээний эхлэл. 10-р анги. 17 хүснэгт + арга зүй, . Хүснэгтийг 680 х 980 мм хэмжээтэй зузаан хэвлэмэл картон дээр хэвлэв. Иж бүрдэл нь товхимолтойарга зүйн зөвлөмж
    • багшийн хувьд. 17 хуудас бүхий боловсролын цомог.…Интеграл ба бусад математикийн томьёоны хүснэгтүүд, Дуайт Г.Б. Алдарт лавлах номын арав дахь хэвлэлт нь тодорхойгүй ба тодорхой интегралын маш дэлгэрэнгүй хүснэгтүүдийг агуулдаг.
    их тоо

    Ахиллес яст мэлхийгээс арав дахин хурдан гүйж, түүнээс мянган алхмын ард байна гэж бодъё. Ахиллес энэ зайд гүйхэд шаардагдах хугацаанд яст мэлхий нэг чиглэлд зуун алхам мөлхөх болно. Ахиллес зуун алхам гүйхэд яст мэлхий дахиад арван алхам мөлхдөг гэх мэт. Энэ үйл явц эцэс төгсгөлгүй үргэлжлэх бөгөөд Ахиллес яст мэлхийг хэзээ ч гүйцэхгүй.

    Энэ үндэслэл нь дараагийн бүх үеийнхний хувьд логик цочрол болсон. Аристотель, Диоген, Кант, Гегель, Гильберт... Тэд бүгд нэг талаараа Зеногийн апориа гэж үзсэн. Цочрол маш хүчтэй байсан тул " ... өнөөдрийг хүртэл хэлэлцүүлэг үргэлжилж байна, шинжлэх ухааны нийгэмлэг парадоксуудын мөн чанарын талаар нэгдсэн саналд хүрч чадаагүй байна ... асуудлыг судлахад математикийн шинжилгээ, олонлогын онол, шинэ физик, философийн хандлагыг оролцуулсан; ; Тэдгээрийн аль нь ч асуудлыг шийдэх нийтээр хүлээн зөвшөөрөгдсөн шийдэл болсонгүй ..."[Википедиа, "Зеногийн апориа". Хүн бүр хууртагдаж байгааг ойлгодог, гэхдээ хууран мэхлэлт юунаас бүрддэгийг хэн ч ойлгодоггүй.

    Математикийн үүднээс авч үзвэл Зено өөрийн апориадаа хэмжигдэхүүнээс . Энэ шилжилт нь байнгын бус хэрэглээг илэрхийлдэг. Миний ойлгож байгаагаар хэрэглээний математикийн аппарат хувьсах нэгжХэмжилт нь хараахан боловсруулагдаагүй эсвэл Зеногийн апорид хэрэглээгүй байна. Ердийн логикоо ашиглах нь биднийг урхинд оруулдаг. Бид сэтгэлгээний инерцийн улмаас цаг хугацааны тогтмол нэгжийг харилцан хамааралтай утгад ашигладаг. Физик талаас нь авч үзвэл, Ахиллес яст мэлхийг гүйцэх тэр мөчид цаг бүрэн зогсох хүртэл удааширч байгаа мэт харагдаж байна. Хэрэв цаг хугацаа зогсвол Ахиллес яст мэлхийг гүйцэж чадахгүй.

    Хэрэв бид ердийн логикоо эргүүлбэл бүх зүйл байрандаа орно. Ахиллес хамт гүйдэг тогтмол хурд. Түүний замын дараагийн хэсэг бүр өмнөхөөсөө арав дахин богино байна. Үүний дагуу үүнийг даван туулахад зарцуулсан хугацаа өмнөхөөсөө арав дахин бага байна. Хэрэв бид энэ нөхцөлд "хязгааргүй" гэсэн ойлголтыг ашиглавал "Ахиллес яст мэлхийг хязгааргүй хурдан гүйцэх болно" гэж хэлэх нь зөв байх болно.

    Энэ логик урхинаас хэрхэн зайлсхийх вэ? Цагийн тогтмол нэгжид үлдэж, харилцан адилгүй нэгж рүү бүү шилжинэ. Зеногийн хэлээр энэ нь дараах байдалтай байна.

    Ахиллес мянган алхам гүйхэд яст мэлхий нэг зүгт зуун алхам мөлхөх болно. Эхнийхтэй тэнцэх дараагийн хугацааны интервалд Ахиллес дахиад мянган алхам гүйж, яст мэлхий зуун алхам мөлхөх болно. Одоо Ахиллес яст мэлхийнээс найман зуун алхмын өмнө байна.

    Энэ хандлага нь бодит байдлыг ямар ч логик парадоксгүйгээр хангалттай дүрсэлдэг. Гэхдээ тийм биш бүрэн шийдэласуудлууд. Эйнштейний гэрлийн хурдыг үл тоомсорлодог тухай мэдэгдэл нь Зеногийн "Ахиллес ба яст мэлхий" апориатай тун төстэй юм. Бид энэ асуудлыг судалж, дахин бодож, шийдвэрлэх шаардлагатай хэвээр байна. Мөн шийдлийг хязгааргүй олон тоогоор бус хэмжилтийн нэгжээр хайх ёстой.

    Зеногийн өөр нэг сонирхолтой апориа нь нисдэг сумны тухай өгүүлдэг.

    Нисдэг сум цаг мөч бүрт амарч, цаг мөч бүрт амарч байдаг тул хөдөлгөөнгүй байдаг.

    Энэ апорид логик парадоксыг маш энгийнээр даван туулдаг - цаг мөч бүрт нисдэг сум сансар огторгуйн өөр өөр цэгүүдэд амарч байгаа бөгөөд энэ нь үнэндээ хөдөлгөөн юм гэдгийг тодруулахад хангалттай. Энд бас нэг зүйлийг анхаарах хэрэгтэй. Зам дээрх машины нэг гэрэл зургаас түүний хөдөлгөөний баримт, түүнд хүрэх зайг тодорхойлох боломжгүй юм. Машин хөдөлж байгаа эсэхийг тодорхойлохын тулд цаг хугацааны өөр өөр цэгээс нэг цэгээс авсан хоёр гэрэл зураг хэрэгтэй боловч тэдгээрийн хоорондох зайг тодорхойлж чадахгүй. Машин хүртэлх зайг тодорхойлохын тулд танд сансар огторгуйн өөр өөр цэгүүдээс авсан хоёр гэрэл зураг хэрэгтэй, гэхдээ тэдгээрээс та хөдөлгөөний баримтыг тодорхойлж чадахгүй (мэдээжийн хэрэг, танд тооцоололд нэмэлт мэдээлэл хэрэгтэй, тригонометр танд туслах болно. ). Миний онцлохыг хүссэн зүйл онцгой анхаарал, цаг хугацааны хоёр цэг, сансар огторгуйн хоёр цэг нь судалгаа хийх өөр өөр боломжийг олгодог тул андуурч болохгүй өөр зүйл юм.

    2018 оны 7-р сарын 4, Лхагва гараг

    Багц ба олон багцын ялгааг Википедиа дээр маш сайн дүрсэлсэн байдаг. Харцгаая.

    Таны харж байгаагаар "ижил олонлогт хоёр ижил элемент байж болохгүй", гэхдээ олонлогт ижил элементүүд байгаа бол ийм олонлогийг "олон олонлог" гэж нэрлэдэг. Ухаантай хүмүүс ийм утгагүй логикийг хэзээ ч ойлгохгүй. Энэ бол "бүрэн" гэдэг үгнээс оюун ухаангүй ярьдаг тоть, сургасан сармагчингийн түвшин юм. Математикчид энгийн сургагч багшийн үүрэг гүйцэтгэж, утгагүй санаагаа бидэнд номлодог.

    Эрт урьд цагт гүүрийг барьсан инженерүүд гүүрний туршилт хийж байхдаа гүүрэн доор завинд сууж байжээ. Хэрэв гүүр нурсан бол дунд зэргийн инженер өөрийн бүтээлийн нуранги дор нас баржээ. Гүүр ачааллыг даах чадвартай бол авъяаслаг инженер өөр гүүрүүдийг барьсан.

    Математикчид “намайг бод, би гэртээ байна” гэх, эс тэгвээс “математик хийсвэр ойлголтуудыг судалдаг” гэсэн хэллэгийн ард яаж нуугдаж байсан ч тэдгээрийг бодит байдалтай салшгүй холбодог хүйн ​​зангилаа байдаг. Энэ хүйн ​​бол мөнгө. Математик олонлогын онолыг математикчдад өөрсдөө хэрэгжүүлцгээе.

    Бид математикийн хичээлийг маш сайн сурсан, одоо цалингаа өгөөд кассанд сууж байна. Тэгэхээр нэг математикч мөнгөө авахаар манайд ирдэг. Бид түүнд бүх дүнг тоолж, өөр өөр овоолго хэлбэрээр ширээн дээр тавьж, ижил мөнгөн дэвсгэртийг оруулав. Дараа нь бид овоо бүрээс нэг дэвсгэрт авч, математикчдаа түүний "математикийн цалин" -ыг өгнө. Ижил элементгүй олонлог нь ижил элементтэй олонлогтой тэнцүү биш гэдгийг нотлох үед л үлдсэн үнэт цаасыг хүлээн авах болно гэдгийг математикчд тайлбарлая. Эндээс л зугаа цэнгэл эхэлдэг.

    Юуны өмнө, депутатуудын логик ажиллах болно: "Үүнийг бусдад хэрэглэж болно, гэхдээ надад биш!" Дараа нь тэд ижил мөнгөн дэвсгэртүүд өөр өөр үнэт цаасны дугаартай байдаг тул тэдгээрийг ижил элемент гэж үзэх боломжгүй гэж биднийг тайвшруулж эхэлнэ. За, цалингаа зоосоор тоолъё - зоосон дээр ямар ч тоо байхгүй. Энд математикч физикийг сандарч санаж эхэлнэ: өөр өөр зоосон мөнгө дээр байдаг өөр өөр тоо хэмжээЗоос бүрийн шороо, талст бүтэц, атомын зохион байгуулалт нь өвөрмөц...

    Одоо надад хамгийн их байна сонирхолтой асуулт: олонлогийн элементүүд нь олонлогийн элементүүд болон эсрэгээр хувирах шугам хаана байх вэ? Ийм шугам байхгүй - бүх зүйлийг бөө нар шийддэг, шинжлэх ухаан энд хэвтэхэд ч ойрхон биш юм.

    Энд хар. Бид ижил талбайтай хөлбөмбөгийн цэнгэлдэхүүдийг сонгодог. Талбайн талбайнууд ижил байна - энэ нь бид олон багцтай гэсэн үг юм. Гэхдээ эдгээр ижил цэнгэлдэх хүрээлэнгүүдийн нэрийг харвал нэр нь өөр учраас олон гарч ирнэ. Таны харж байгаагаар ижил элементүүдийн багц нь олонлог ба олон багц юм. Аль нь зөв бэ? Тэгээд энд математикч-бөө-хурц хүн ханцуйнаасаа бүрээ гаргаж ирээд багц эсвэл олон багцын тухай ярьж эхлэв. Ямар ч байсан тэр бидний зөв гэдэгт итгүүлэх болно.

    Орчин үеийн бөө нар олонлогийн онолыг бодит байдалтай уялдуулан хэрхэн ажилладагийг ойлгохын тулд нэг олонлогийн элементүүд нөгөө олонлогийн элементүүдээс юугаараа ялгаатай вэ гэсэн нэг асуултад хариулахад хангалттай. Би та нарт "нэг бүхэл бүтэн биш гэж төсөөлж болохуйц" эсвэл "ганц бүхэлдээ төсөөлшгүй" зүйлгүйгээр харуулах болно.

    2018 оны 3-р сарын 18, Ням гараг

    Тооны цифрүүдийн нийлбэр гэдэг нь математикт огт хамааралгүй бөөгийн хэнгэрэгтэй бүжиг юм. Тийм ээ, математикийн хичээл дээр бид тооны цифрүүдийн нийлбэрийг олж, түүнийгээ ашиглахыг заадаг, гэхдээ тэд бөө учраас үр хойчдоо ур чадвар, мэргэн ухааныг зааж сургах, эс бөгөөс бөө нар зүгээр л үхэх болно.

    Танд нотлох баримт хэрэгтэй байна уу? Википедиа нээгээд "Тооны цифрүүдийн нийлбэр" гэсэн хуудсыг хайж олоод үзээрэй. Тэр байхгүй. Аливаа тооны цифрүүдийн нийлбэрийг олох томьёо математикт байдаггүй. Эцсийн эцэст тоонууд байна график тэмдэг, түүний тусламжтайгаар бид тоо бичдэг бөгөөд математикийн хэлээр даалгавар нь иймэрхүү сонсогддог: "Аливаа тоог илэрхийлэх график тэмдгийн нийлбэрийг ол." Математикчид энэ асуудлыг шийдэж чадахгүй ч бөө нар амархан шийдэж чадна.

    Өгөгдсөн тооны цифрүүдийн нийлбэрийг олохын тулд юу хийж, яаж хийхийг олж мэдье. Ингээд 12345 тоотой болцгооё. Энэ тооны цифрүүдийн нийлбэрийг олохын тулд юу хийх хэрэгтэй вэ? Бүх алхамуудыг дарааллаар нь авч үзье.

    1. Цаасан дээр тоог бич. Бид юу хийсэн бэ? Бид энэ тоог график тооны тэмдэг болгон хөрвүүлсэн. Энэ бол математикийн үйлдэл биш юм.

    2. Бид үр дүнд нь нэг зургийг хэд хэдэн зураг болгон хуваасан. Зургийг тайрах нь математикийн үйлдэл биш юм.

    3. График тэмдэгтүүдийг тоо болгон хувиргах. Энэ бол математикийн үйлдэл биш юм.

    4. Үүссэн тоонуудыг нэмнэ. Одоо энэ бол математик.

    12345 тооны цифрүүдийн нийлбэр нь 15. Математикчдын хэрэглэдэг бөө нарын заадаг “зүсэх, оёх дамжаа” юм. Гэхдээ энэ нь бүгд биш юм.

    Математикийн үүднээс авч үзвэл ямар тооны системд тоо бичих нь хамаагүй. Тэгэхээр, in өөр өөр системүүдТооцооллын хувьд ижил тооны цифрүүдийн нийлбэр өөр байх болно. Математикийн хувьд тооны системийг тоон баруун талд байрлах доод үсэг болгон заадаг. ХАМТ их тоо 12345 Би толгойгоо хуурмааргүй байна, тухай нийтлэлээс 26 дугаарыг харцгаая. Энэ тоог хоёртын, наймтын, аравтын, арван зургаатын тооллын системд бичье. Бид алхам бүрийг микроскопоор харахгүй. Үр дүнг харцгаая.

    Таны харж байгаагаар янз бүрийн тооны системд ижил тооны цифрүүдийн нийлбэр өөр өөр байдаг. Энэ үр дүн нь математиктай ямар ч холбоогүй юм. Хэрэв та тэгш өнцөгтийн талбайг метр, сантиметрээр тодорхойлсон бол огт өөр үр дүн гарахтай адил юм.

    Тэг нь бүх тооны системд адилхан харагддаг бөгөөд цифрүүдийн нийлбэр байдаггүй. Энэ бол үүнийг батлах өөр нэг үндэслэл юм. Математикчдад зориулсан асуулт: математикт тоо биш зүйлийг яаж тодорхойлдог вэ? Математикчдын хувьд тооноос өөр юу ч байхгүй гэж үү? Би үүнийг бөө нарт зөвшөөрч болох ч эрдэмтдэд зөвшөөрөөгүй. Бодит байдал зөвхөн тоон дээр тогтдоггүй.

    Хүлээн авсан үр дүнг тооллын систем нь тоонуудын хэмжүүрийн нэгж гэдгийг нотлох баримт гэж үзэх ёстой. Эцсийн эцэст бид өөр өөр хэмжүүр бүхий тоонуудыг харьцуулж болохгүй. Хэрэв ижил хэмжигдэхүүнийг өөр өөр хэмжих нэгжүүдтэй ижил үйлдэл хийхэд хүргэдэг өөр өөр үр дүнхарьцуулж үзээд математиктай ямар ч хамаагүй гэсэн үг.

    Жинхэнэ математик гэж юу вэ? Энэ нь математик үйлдлийн үр дүн нь тоон хэмжээ, ашигласан хэмжих нэгж, энэ үйлдлийг хэн гүйцэтгэж байгаагаас хамаарахгүй байх үед юм.

    Хаалган дээр гарын үсэг зурна уу Тэр хаалгыг онгойлгоод:

    Өө! Энэ эмэгтэйчүүдийн бие засах газар биш гэж үү?
    - Залуу эмэгтэй! Энэ бол сүнснүүдийг тэнгэрт өргөгдсөнийхөө ариун байдлыг судлах лаборатори юм! Дээрээс нь гал болон дээш сум. Өөр ямар бие засах газар вэ?

    Эмэгтэй... Дээд талын гэрэлт цагираг, доош сум нь эрэгтэй.

    Хэрэв иймэрхүү зүйл таны нүдний өмнө өдөрт хэд хэдэн удаа анивчдаг бол дизайн урлаг,

    Дараа нь та машиндаа гэнэт хачин дүрсийг олж хараад гайхах зүйл алга.

    Би хувьдаа баас хийж буй хүнд хасах дөрвөн градусыг харахыг хичээдэг (нэг зураг) (хэд хэдэн зургийн найрлага: хасах тэмдэг, дөрөв, градусын тэмдэглэгээ). Тэгээд би энэ охиныг тэнэг гэж бодохгүй байна, үгүй физикийн мэдлэгтэй. Тэр зүгээр л график дүрсийг хүлээн авах хүчтэй хэвшмэл ойлголттой. Үүнийг математикчид бидэнд байнга заадаг. Энд нэг жишээ байна.

    1А нь "хасах дөрвөн градус" эсвэл "нэг а" биш юм. Энэ нь "баасан хүн" буюу арван зургаатын тооллын "хорин зургаа" гэсэн тоо юм. Энэ тооны системд байнга ажилладаг хүмүүс тоо, үсгийг нэг график тэмдэг болгон автоматаар хүлээн авдаг.

    Тригонометрийн таних тэмдэг- эдгээр нь нэг өнцгийн синус, косинус, тангенс, котангенсийн хоорондох холбоог бий болгодог тэгшитгэлүүд бөгөөд эдгээр функцүүдийн аль нэгийг нь мэдэх боломжийг олгодог.

    tg \alpha = \frac(\sin \alpha)(\cos \alpha), \enspace ctg \alpha = \frac(\cos \alpha)(\sin \alpha)

    tg \alpha \cdot ctg \alpha = 1

    Энэ ижил төстэй байдал нь нэг өнцгийн синусын квадрат ба нэг өнцгийн косинусын квадратын нийлбэр нэгтэй тэнцүү гэж хэлдэг бөгөөд энэ нь практикт нэг өнцгийн синусыг косинус нь мэдэгдэж байх үед болон эсрэгээр нь тооцоолох боломжтой болгодог. .

    Тригонометрийн илэрхийлэлийг хөрвүүлэхдээ энэ таних тэмдгийг ихэвчлэн ашигладаг бөгөөд энэ нь нэг өнцгийн косинус ба синусын квадратуудын нийлбэрийг нэгээр сольж, солих үйлдлийг урвуу дарааллаар гүйцэтгэх боломжийг олгодог.

    Синус ба косинусыг ашиглан тангенс ба котангенсыг олох

    tg \alpha = \frac(\sin \alpha)(\cos \alpha),\enspace

    Эдгээр таних тэмдэг нь синус, косинус, тангенс, котангенсийн тодорхойлолтоос үүсдэг. Эцсийн эцэст хэрэв та үүнийг харвал ординат y нь синус, абсцисса х нь косинус юм. Дараа нь тангенс нь харьцаатай тэнцүү байх болно \frac(y)(x)=\frac(\sin \alpha)(\cos \alpha), болон харьцаа \frac(x)(y)=\frac(\cos \alpha)(\sin \alpha)- котангенс байх болно.

    Зөвхөн тэдгээрт багтсан тригонометрийн функцууд нь утга учиртай \alpha өнцгүүдийн хувьд адилтгалууд хадгалагдана гэдгийг нэмж хэлье. ctg \alpha=\frac(\cos \alpha)(\sin \alpha).

    Жишээ нь: tg \alpha = \frac(\sin \alpha)(\cos \alpha)-аас ялгаатай \alpha өнцөгт хүчинтэй \frac(\pi)(2)+\pi z, А ctg \alpha=\frac(\cos \alpha)(\sin \alpha)- \pi z-ээс өөр \alpha өнцгийн хувьд z нь бүхэл тоо юм.

    Тангенс ба котангенс хоорондын хамаарал

    tg \alpha \cdot ctg \alpha=1

    Энэ таних нь зөвхөн өөр альфа өнцөгт хүчинтэй \frac(\pi)(2) z. Үгүй бол котангенс эсвэл тангенсыг тодорхойлохгүй.

    Дээр дурдсан зүйлс дээр үндэслэн бид үүнийг олж авна tg \alpha = \frac(y)(x), А ctg \alpha=\frac(x)(y). Үүнийг дагадаг tg \alpha \cdot ctg \alpha = \frac(y)(x) \cdot \frac(x)(y)=1. Иймд утга учиртай ижил өнцгийн тангенс ба котангенс нь харилцан урвуу тоонууд юм.

    Тангенс ба косинус, котангенс ба синусын хоорондын хамаарал

    tg^(2) \alpha + 1=\frac(1)(\cos^(2) \alpha)- \alpha ба 1 өнцгийн тангенсийн квадратын нийлбэр нь энэ өнцгийн косинусын урвуу квадраттай тэнцүү байна. Энэ таних тэмдэг нь бусад бүх \alpha-д хүчинтэй \frac(\pi)(2)+ \pi z.

    1+ctg^(2) \alpha=\frac(1)(\sin^(2)\альфа)- 1-ийн нийлбэр ба \alpha өнцгийн котангенсийн квадрат нь тухайн өнцгийн синусын урвуу квадраттай тэнцүү байна. Энэ таних тэмдэг нь \pi z-ээс өөр ямар ч \alpha-д хүчинтэй.

    Тригонометрийн таних тэмдэг ашиглан асуудлыг шийдвэрлэх жишээ

    Жишээ 1

    \sin \alpha, tg \alpha бол ол \cos \alpha=-\frac12Тэгээд \frac(\pi)(2)< \alpha < \pi ;

    Шийдлийг харуулах

    Шийдэл

    \sin \alpha ба \cos \alpha функцууд нь томъёогоор хамааралтай \sin^(2)\alpha + \cos^(2) \alpha = 1. Энэ томъёонд орлуулах \cos \alpha = -\frac12, бид авах:

    \sin^(2)\alpha + \left (-\frac12 \right)^2 = 1

    Энэ тэгшитгэл нь 2 шийдэлтэй:

    \sin \alpha = \pm \sqrt(1-\frac14) = \pm \frac(\sqrt 3)(2)

    Нөхцөлөөр \frac(\pi)(2)< \alpha < \pi . Хоёрдугаар улиралд синус эерэг байна, тиймээс \sin \alpha = \frac(\sqrt 3)(2).

    tan \alpha-г олохын тулд бид томъёог ашигладаг tg \alpha = \frac(\sin \alpha)(\cos \alpha)

    tg \alpha = \frac(\sqrt 3)(2) : \frac12 = \sqrt 3

    Жишээ 2

    Хэрэв мөн бол \cos \alpha ба ctg \alpha-г ол \frac(\pi)(2)< \alpha < \pi .

    Шийдлийг харуулах

    Шийдэл

    Томъёонд орлуулах \sin^(2)\alpha + \cos^(2) \alpha = 1өгсөн дугаар \sin \alpha=\frac(\sqrt3)(2), бид авдаг \left (\frac(\sqrt3)(2)\right)^(2) + \cos^(2) \alpha = 1. Энэ тэгшитгэл нь хоёр шийдэлтэй \cos \alpha = \pm \sqrt(1-\frac34)=\pm\sqrt\frac14.

    Нөхцөлөөр \frac(\pi)(2)< \alpha < \pi . Хоёрдугаар улиралд косинус сөрөг байна, тиймээс \cos \alpha = -\sqrt\frac14=-\frac12.

    ctg \alpha-г олохын тулд бид томъёог ашиглана ctg \alpha = \frac(\cos \alpha)(\sin \alpha). Бид тохирох утгыг мэддэг.

    ctg \alpha = -\frac12: \frac(\sqrt3)(2) = -\frac(1)(\sqrt 3).