Šiandien kalbėsime apie logaritmines formules ir pateiksime orientacinius sprendimų pavyzdžiai.

Jie patys reiškia sprendimų modelius pagal pagrindines logaritmų savybes. Prieš taikydami logaritmines formules sprendimui, priminsime visas savybes:

Dabar, remdamiesi šiomis formulėmis (ypatybėmis), parodysime logaritmų sprendimo pavyzdžiai.

Logaritmų sprendimo pagal formules pavyzdžiai.

Logaritmas teigiamas skaičius b bazei a (žymimas log a b) yra eksponentas, iki kurio a turi būti padidintas, kad būtų gautas b, kai b > 0, a > 0 ir 1.

Pagal apibrėžimą log a b = x, kuris yra ekvivalentas a x = b, todėl log a a x = x.

Logaritmai, pavyzdžiai:

log 2 8 = 3, nes 2 3 = 8

log 7 49 = 2, nes 7 2 = 49

log 5 1/5 = -1, nes 5 -1 = 1/5

Dešimtainis logaritmas- tai paprastas logaritmas, kurio pagrindas yra 10. Jis žymimas kaip lg.

log 10 100 = 2, nes 10 2 = 100

Natūralus logaritmas- taip pat paprastasis logaritmas, logaritmas, bet su baze e (e = 2,71828... - neracionalus skaičius). Žymima kaip ln.

Patartina įsiminti logaritmų formules ar savybes, nes vėliau jų prireiks sprendžiant logaritmus, logaritmines lygtis ir nelygybes. Dar kartą panagrinėkime kiekvieną formulę su pavyzdžiais.

  • Pagrindai logaritminė tapatybė
    a log a b = b

    8 2log 8 3 = (8 2log 8 3) 2 = 3 2 = 9

  • Produkto logaritmas lygi sumai logaritmus
    log a (bc) = log a b + log a c

    log 3 8,1 + log 3 10 = log 3 (8,1*10) = log 3 81 = 4

  • Dalinio logaritmas lygus logaritmų skirtumui
    log a (b/c) = log a b - log a c

    9 log 5 50 /9 log 5 2 = 9 log 5 50- log 5 2 = 9 log 5 25 = 9 2 = 81

  • Logaritminio skaičiaus laipsnio ir logaritmo pagrindo savybės

    Logaritminio skaičiaus eksponentas log a b m = mlog a b

    Logaritmo pagrindo eksponentas log a n b =1/n*log a b

    log a n b m = m/n*log a b,

    jei m = n, gauname log a n b n = log a b

    log 4 9 = log 2 2 3 2 = log 2 3

  • Perėjimas prie naujo pagrindo
    log a b = log c b/log c a,

    jei c = b, gauname log b b = 1

    tada log a b = 1/log b a

    log 0,8 3*log 3 1,25 = log 0,8 3*log 0,8 1,25/log 0,8 3 = log 0,8 1,25 = log 4/5 5/4 = -1

Kaip matote, logaritmų formulės nėra tokios sudėtingos, kaip atrodo. Dabar, pažvelgę ​​į logaritmų sprendimo pavyzdžius, galime pereiti prie logaritminių lygčių. Išsamiau pažvelgsime į logaritminių lygčių sprendimo pavyzdžius straipsnyje: "". Nepraleiskite!

Jei vis dar turite klausimų apie sprendimą, parašykite juos straipsnio komentaruose.

Pastaba: nusprendėme įgyti kitos klasės išsilavinimą ir studijuoti užsienyje.

Skaičiaus logaritmas N remiantis A vadinamas eksponentu X , prie kurios reikia statyti A norėdami gauti numerį N

Su sąlyga, kad
,
,

Iš logaritmo apibrėžimo išplaukia, kad
, t.y.
- ši lygybė yra pagrindinė logaritminė tapatybė.

Logaritmai iki 10 bazės vadinami dešimtainiais logaritmais. Vietoj to
rašyti
.

Logaritmai iki pagrindo e yra vadinami natūraliais ir yra paskirti
.

Pagrindinės logaritmų savybės.

    Vieneto logaritmas yra lygus nuliui bet kuriai bazei.

    Produkto logaritmas lygus faktorių logaritmų sumai.

3) koeficiento logaritmas lygus logaritmų skirtumui


veiksnys
vadinamas perėjimo iš logaritmų į bazę moduliu a prie logaritmų bazėje b .

Naudojant 2–5 savybes, dažnai galima sumažinti sudėtingos išraiškos logaritmą iki paprastų aritmetinių logaritmų operacijų rezultato.

Pavyzdžiui,

Tokios logaritmo transformacijos vadinamos logaritmais. Transformacijos, atvirkštinės logaritmui, vadinamos potenciacija.

2 skyrius. Aukštosios matematikos elementai.

1. Ribos

Funkcijos riba
yra baigtinis skaičius A, jei, kaip xx 0 už kiekvieną iš anksto nustatytą
, yra toks skaičius
kad kai tik
, Tai
.

Funkcija, turinti ribą, skiriasi nuo jos be galo mažu dydžiu:
, kur- b.m.v., t.y.
.

Pavyzdys. Apsvarstykite funkciją
.

Kai stengiamasi
, funkcija y linkęs į nulį:

1.1. Pagrindinės teoremos apie ribas.

    Riba pastovią vertę lygus šiai pastoviai vertei

.

    Baigtinio skaičiaus funkcijų sumos (skirtumo) riba yra lygi šių funkcijų ribų sumai (skirtumui).

    Baigtinio skaičiaus funkcijų sandaugos riba yra lygi šių funkcijų ribų sandaugai.

    Dviejų funkcijų koeficiento riba yra lygi šių funkcijų ribų daliniui, jei vardiklio riba nėra lygi nuliui.

Nuostabios ribos

,
, Kur

1.2. Ribų skaičiavimo pavyzdžiai

Tačiau ne visos ribos taip lengvai apskaičiuojamos. Dažniau apskaičiuojant ribą atskleidžiamas tipo neapibrėžtumas: arba .

.

2. Funkcijos išvestinė

Leiskite mums atlikti funkciją
, ištisinis segmente
.

Argumentas šiek tiek padidėjo
. Tada funkcija gaus prieaugį
.

Argumento vertė atitinka funkcijos reikšmę
.

Argumento vertė
atitinka funkcijos reikšmę.

Vadinasi,.

Raskime šio santykio ribą ties
. Jei ši riba egzistuoja, tada ji vadinama duotosios funkcijos išvestine.

3 apibrėžimas Nurodytos funkcijos išvestinė
argumentu vadinama funkcijos didėjimo ir argumento prieaugio santykio riba, kai argumento prieaugis savavališkai linksta į nulį.

Funkcijos išvestinė
gali būti žymimas taip:

; ; ; .

4 apibrėžimas Funkcijos išvestinės radimo operacija vadinama diferenciacija.

2.1. Mechaninė vedinio reikšmė.

Panagrinėkime tiesinį kurio nors standaus kūno ar materialaus taško judėjimą.

Leiskite tam tikru momentu judantis taškas
buvo per atstumą nuo pradinės padėties
.

Po tam tikro laiko
ji pasitraukė per atstumą
. Požiūris =- vidutinis greitis materialus taškas
. Atsižvelgdami į tai, suraskime šio santykio ribą
.

Vadinasi, momentinio materialaus taško judėjimo greičio nustatymas sumažinamas iki kelio išvestinės laiko atžvilgiu radimo.

2.2. Išvestinės geometrinė reikšmė

Turėkime grafiškai apibrėžtą funkciją
.

Ryžiai. 1. Geometrinė išvestinės reikšmė

Jeigu
, tada tašką
, judės išilgai kreivės, artėdamas prie taško
.

Vadinasi
, t.y. išvestinės reikšmė tam tikrai argumento reikšmei skaitine prasme lygus kampo, kurį sudaro liestinė tam tikrame taške su teigiama ašies kryptimi, tangentei
.

2.3. Pagrindinių diferenciacijos formulių lentelė.

Maitinimo funkcija

Eksponentinė funkcija

Logaritminė funkcija

Trigonometrinė funkcija

Atvirkštinė trigonometrinė funkcija

2.4. Diferencijavimo taisyklės.

Darinys iš

Funkcijų sumos (skirtumo) išvestinė


Dviejų funkcijų sandaugos išvestinė


Dviejų funkcijų dalinio išvestinė


2.5. Darinys iš sudėtinga funkcija.

Tegu funkcija duota
tokia, kad ją būtų galima pavaizduoti formoje

Ir
, kur kintamasis tai yra tarpinis argumentas

Sudėtinės funkcijos išvestinė yra lygi duotosios funkcijos išvestinės tarpinio argumento ir tarpinio argumento išvestinei x atžvilgiu.

1 pavyzdys.

2 pavyzdys.

3. Diferencialinė funkcija.

Tebūnie
, skiriasi tam tikru intervalu
ir tegul adresu ši funkcija turi išvestinę

,

tada galėsime rašyti

(1),

Kur - be galo mažas kiekis,

nuo kada

Padauginus visus lygybės (1) narius iš
mes turime:

Kur
- b.m.v. aukštesnė tvarka.

Didumas
vadinamas funkcijos diferencialu
ir yra paskirtas

.

3.1. Diferencialo geometrinė vertė.

Tegu funkcija duota
.

2 pav. Geometrinė diferencialo reikšmė.

.

Akivaizdu, kad funkcijos skirtumas
yra lygus liestinės ordinatės prieaugiui tam tikrame taške.

3.2. Įvairių eilių dariniai ir diferencialai.

Jei yra
, Tada
vadinamas pirmuoju dariniu.

Pirmojo vedinio vedinys vadinamas antros eilės išvestiniu ir rašomas
.

Funkcijos n-osios eilės išvestinė
vadinama (n-1) eilės išvestine ir rašoma:

.

Funkcijos diferencialo diferencialas vadinamas antruoju diferencialu arba antros eilės diferencialu.

.

.

3.3 Biologinių problemų sprendimas naudojant diferenciaciją.

1 užduotis. Tyrimai parodė, kad mikroorganizmų kolonijos augimas paklūsta įstatymui
, Kur N – mikroorganizmų skaičius (tūkst.), t – laikas (dienos).

b) Ar šiuo laikotarpiu kolonijos populiacija padidės ar mažės?

Atsakymas. Kolonijos dydis padidės.

2 užduotis. Ežero vanduo periodiškai tiriamas, siekiant stebėti patogeninių bakterijų kiekį. Per t dienų po tyrimo bakterijų koncentracija nustatoma pagal santykį

.

Kada ežere bus minimali bakterijų koncentracija ir ar bus galima jame maudytis?

Sprendimas: Funkcija pasiekia max arba min, kai jos išvestinė lygi nuliui.

,

Nustatykime, kad maksimalus arba min. bus po 6 dienų. Norėdami tai padaryti, paimkime antrąją išvestinę.


Atsakymas: Po 6 dienų bus minimali bakterijų koncentracija.

Logaritmus, kaip ir bet kokius skaičius, galima visais būdais sudėti, atimti ir transformuoti. Bet kadangi logaritmai nėra visiškai įprasti skaičiai, čia yra taisyklės, kurios vadinamos pagrindinės savybės.

Jūs tikrai turite žinoti šias taisykles – be jų nepavyks išspręsti nė vienos rimtos logaritminės problemos. Be to, jų labai mažai – viską gali išmokti per vieną dieną. Taigi pradėkime.

Logaritmų pridėjimas ir atėmimas

Apsvarstykite du logaritmus su tais pačiais pagrindais: log a x ir žurnalas a y. Tada juos galima pridėti ir atimti, ir:

  1. žurnalas a x+ žurnalas a y= žurnalas a (x · y);
  2. žurnalas a x− žurnalas a y= žurnalas a (x : y).

Taigi logaritmų suma lygi sandaugos logaritmui, o skirtumas lygus koeficiento logaritmui. Atkreipkite dėmesį: pagrindinis taškasČia - identiškais pagrindais. Jei priežastys skiriasi, šios taisyklės neveikia!

Šios formulės padės apskaičiuoti logaritminę išraišką net tada, kai neatsižvelgiama į atskiras jos dalis (žr. pamoką „Kas yra logaritmas“). Pažvelkite į pavyzdžius ir pamatykite:

Rąstas 6 4 + rąstas 6 9.

Kadangi logaritmai turi tas pačias bazes, naudojame sumos formulę:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Užduotis. Raskite išraiškos reikšmę: log 2 48 − log 2 3.

Pagrindai yra vienodi, mes naudojame skirtumo formulę:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Užduotis. Raskite išraiškos reikšmę: log 3 135 − log 3 5.

Vėlgi bazės yra tos pačios, todėl turime:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Kaip matote, pradinės išraiškos yra sudarytos iš „blogų“ logaritmų, kurie nėra skaičiuojami atskirai. Bet po transformacijų gaunami visiškai normalūs skaičiai. Daugelis testų yra pagrįsti šiuo faktu. Taip, vieningo valstybinio egzamino metu į testus panašūs posakiai siūlomi labai rimtai (kartais praktiškai be pakeitimų).

Rodiklio išskyrimas iš logaritmo

Dabar šiek tiek apsunkinkime užduotį. Ką daryti, jei logaritmo pagrindas arba argumentas yra laipsnis? Tada šio laipsnio rodiklis gali būti paimtas iš logaritmo ženklo pagal šias taisykles:

Nesunku pastebėti, kad paskutinė taisyklė seka pirmąsias dvi. Bet vis tiek geriau tai atsiminti - kai kuriais atvejais tai žymiai sumažins skaičiavimų skaičių.

Žinoma, visos šios taisyklės turi prasmę, jei laikomasi logaritmo ODZ: a > 0, a ≠ 1, x> 0. Ir dar vienas dalykas: išmokite taikyti visas formules ne tik iš kairės į dešinę, bet ir atvirkščiai, t.y. Skaičius prieš logaritmo ženklą galite įvesti į patį logaritmą. Tai yra tai, ko dažniausiai reikia.

Užduotis. Raskite išraiškos reikšmę: log 7 49 6 .

Atsikratykime argumento laipsnio naudodami pirmąją formulę:
log 7 49 6 = 6 log 7 49 = 6 2 = 12

Užduotis. Raskite posakio prasmę:

[Paveikslo antraštė]

Atkreipkite dėmesį, kad vardiklyje yra logaritmas, kurio pagrindas ir argumentas yra tikslieji laipsniai: 16 = 2 4 ; 49 = 7 2. Turime:

[Paveikslo antraštė]

Manau, kad paskutinis pavyzdys reikalauja šiek tiek paaiškinimo. Kur dingo logaritmai? Iki pat paskutinės akimirkos dirbame tik su vardikliu. Pateikėme ten stovinčio logaritmo bazę ir argumentą galių pavidalu ir išėmėme eksponentus - gavome „trijų aukštų“ trupmeną.

Dabar pažvelkime į pagrindinę dalį. Skaitiklyje ir vardiklyje yra tas pats skaičius: log 2 7. Kadangi log 2 7 ≠ 0, tai trupmeną galime sumažinti – vardiklyje liks 2/4. Pagal aritmetikos taisykles keturis galima perkelti į skaitiklį, kas buvo padaryta. Rezultatas buvo atsakymas: 2.

Perėjimas prie naujo pagrindo

Kalbėdamas apie logaritmų sudėjimo ir atėmimo taisykles, konkrečiai pabrėžiau, kad jos veikia tik su tais pačiais pagrindais. O jei priežastys kitokios? O jei jie nėra tikslūs to paties skaičiaus laipsniai?

Į pagalbą ateina perėjimo prie naujo pagrindo formulės. Suformuluokime juos teoremos forma:

Tegul tai duota logaritmo žurnalas a x. Tada už bet kokį skaičių c toks kad c> 0 ir c≠ 1, lygybė yra teisinga:

[Paveikslo antraštė]

Visų pirma, jei įdėtume c = x, gauname:

[Paveikslo antraštė]

Iš antrosios formulės išplaukia, kad logaritmo bazę ir argumentą galima sukeisti vietomis, tačiau tokiu atveju „apverčiama“ visa išraiška, t.y. vardiklyje atsiranda logaritmas.

Šios formulės retai sutinkamos įprastose skaitinės išraiškos. Įvertinti, kiek jos patogios, galima tik sprendžiant logaritmines lygtis ir nelygybes.

Tačiau yra problemų, kurių niekaip nepavyks išspręsti, išskyrus persikėlimą į naują fondą. Pažvelkime į porą iš šių:

Užduotis. Raskite išraiškos reikšmę: log 5 16 log 2 25.

Atkreipkite dėmesį, kad abiejų logaritmų argumentuose yra tikslios galios. Išimkime rodiklius: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2 log 2 5;

Dabar „apverskime“ antrąjį logaritmą:

[Paveikslo antraštė]

Kadangi sandauga nesikeičia keičiant veiksnius, ramiai padauginome keturis ir du, o tada nagrinėjome logaritmus.

Užduotis. Raskite išraiškos reikšmę: log 9 100 lg 3.

Pirmojo logaritmo pagrindas ir argumentas yra tikslios galios. Užsirašykime tai ir atsikratykime rodiklių:

[Paveikslo antraštė]

Dabar atsikratykime dešimtainio logaritmo, pereidami prie naujos bazės:

[Paveikslo antraštė]

Pagrindinė logaritminė tapatybė

Dažnai sprendimo procese skaičių reikia pateikti kaip logaritmą tam tikram pagrindui. Šiuo atveju mums padės šios formulės:

Pirmuoju atveju skaičius n tampa argumentu stovinčio laipsnio rodikliu. Skaičius n gali būti visiškai bet kas, nes tai tik logaritmo reikšmė.

Antroji formulė iš tikrųjų yra perfrazuotas apibrėžimas. Taip ji vadinama: pagrindinė logaritminė tapatybė.

Tiesą sakant, kas atsitiks, jei numeris b pakelti iki tokios galios, kad skaičius bšiai galiai suteikia skaičių a? Teisingai: jūs gaunate tą patį numerį a. Dar kartą atidžiai perskaitykite šią pastraipą – daugeliui žmonių ji užstringa.

Kaip ir formulės, skirtos pereiti prie naujos bazės, pagrindinė logaritminė tapatybė kartais yra vienintelis galimas sprendimas.

Užduotis. Raskite posakio prasmę:

[Paveikslo antraštė]

Atkreipkite dėmesį, kad log 25 64 = log 5 8 – tiesiog paėmė kvadratą iš logaritmo pagrindo ir argumento. Atsižvelgiant į galių dauginimo taisykles tuo pačiu pagrindu, gauname:

[Paveikslo antraštė]

Jei kas nežino, tai buvo tikra užduotis iš unifikuoto valstybinio egzamino :)

Logaritminis vienetas ir logaritminis nulis

Baigdamas pateiksiu dvi tapatybes, kurias vargu ar galima pavadinti savybėmis – veikiau tai yra logaritmo apibrėžimo pasekmės. Jie nuolat atsiranda problemų ir, stebėtinai, sukelia problemų net „pažengusiems“ studentams.

  1. žurnalas a a= 1 yra logaritminis vienetas. Prisiminkite kartą ir visiems laikams: logaritmas bet kokiam pagrindui a nuo šio pagrindo yra lygus vienetui.
  2. žurnalas a 1 = 0 yra logaritminis nulis. Bazė a gali būti bet koks, bet jei argumente yra vienas, logaritmas lygus nuliui! Nes a 0 = 1 yra tiesioginė apibrėžimo pasekmė.

Tai visos savybės. Būtinai praktikuokite juos pritaikydami praktiškai! Pamokos pradžioje atsisiųskite cheat lapą, atsispausdinkite ir išspręskite problemas.

Mums svarbu išlaikyti jūsų privatumą. Dėl šios priežasties sukūrėme Privatumo politiką, kurioje aprašoma, kaip naudojame ir saugome jūsų informaciją. Peržiūrėkite mūsų privatumo praktiką ir praneškite mums, jei turite klausimų.

Asmeninės informacijos rinkimas ir naudojimas

Asmeninė informacija reiškia duomenis, kurie gali būti naudojami konkretaus asmens tapatybei nustatyti arba susisiekti su juo.

Jūsų gali būti paprašyta pateikti savo asmeninę informaciją bet kuriuo metu, kai susisiekiate su mumis.

Toliau pateikiami keli pavyzdžiai, kokios rūšies asmeninės informacijos galime rinkti ir kaip galime tokią informaciją naudoti.

Kokią asmeninę informaciją renkame:

  • Kai pateiksite užklausą svetainėje, mes galime surinkti įvairios informacijos, įskaitant jūsų vardą, telefono numerį, adresą paštu ir tt

Kaip naudojame jūsų asmeninę informaciją:

  • Mūsų renkama asmeninė informacija leidžia mums susisiekti su jumis ir informuoti apie unikalių pasiūlymų, akcijos ir kiti renginiai bei būsimi renginiai.
  • Retkarčiais galime naudoti jūsų asmeninę informaciją svarbiems pranešimams ir pranešimams siųsti.
  • Mes taip pat galime naudoti asmeninę informaciją vidiniais tikslais, pavyzdžiui, atlikti auditą, duomenų analizę ir įvairius tyrimus, siekdami tobulinti teikiamas paslaugas ir teikti rekomendacijas dėl mūsų paslaugų.
  • Jei dalyvaujate prizų traukime, konkurse ar panašioje akcijoje, mes galime naudoti jūsų pateiktą informaciją tokioms programoms administruoti.

Informacijos atskleidimas trečiosioms šalims

Mes neatskleidžiame iš jūsų gautos informacijos trečiosioms šalims.

Išimtys:

  • Esant poreikiui – įstatymų nustatyta tvarka, teismine tvarka, in teismo procesas, ir (arba) remiantis viešais prašymais ar vyriausybinių įstaigų prašymais Rusijos Federacijoje – atskleisti savo asmeninę informaciją. Taip pat galime atskleisti informaciją apie jus, jei nuspręsime, kad toks atskleidimas yra būtinas arba tinkamas saugumo, teisėsaugos ar kitais visuomenei svarbiais tikslais.
  • Reorganizavimo, susijungimo ar pardavimo atveju surinktą asmeninę informaciją galime perduoti atitinkamai trečiajai šaliai.

Asmeninės informacijos apsauga

Mes imamės atsargumo priemonių, įskaitant administracines, technines ir fizines, siekdami apsaugoti jūsų asmeninę informaciją nuo praradimo, vagystės ir netinkamo naudojimo, taip pat nuo neteisėtos prieigos, atskleidimo, pakeitimo ir sunaikinimo.

Jūsų privatumo gerbimas įmonės lygiu

Siekdami užtikrinti, kad jūsų asmeninė informacija būtų saugi, savo darbuotojams pranešame apie privatumo ir saugumo standartus ir griežtai vykdome privatumo praktiką.

Kaip žinote, dauginant išraiškas su laipsniais, jų rodikliai visada sumuojasi (a b *a c = a b+c). Šį matematinį dėsnį išvedė Archimedas, o vėliau, VIII amžiuje, matematikas Virasenas sukūrė sveikųjų rodiklių lentelę. Būtent jie pasitarnavo tolesniam logaritmų atradimui. Šios funkcijos naudojimo pavyzdžių galima rasti beveik visur, kur reikia supaprastinti sudėtingą dauginimą paprastu sudėjimu. Jei skaitydami šį straipsnį skirsite 10 minučių, paaiškinsime, kas yra logaritmai ir kaip su jais dirbti. Paprasta ir prieinama kalba.

Apibrėžimas matematikoje

Logaritmas yra tokios formos išraiška: log a b=c, tai yra, bet kurio neneigiamo skaičiaus (ty bet kurio teigiamo) „b“ logaritmas iki jo bazės „a“ laikomas laipsniu „c“. “, iki kurio turi būti padidinta bazė „a“, kad galiausiai būtų gauta reikšmė „b“. Išanalizuokime logaritmą naudodami pavyzdžius, tarkime, kad yra išraiška log 2 8. Kaip rasti atsakymą? Tai labai paprasta, reikia rasti tokią galią, kad nuo 2 iki reikiamos galios gautumėte 8. Galvoje atlikę keletą skaičiavimų, gauname skaičių 3! Ir tai tiesa, nes 2 iki 3 laipsnio suteikia atsakymą kaip 8.

Logaritmų tipai

Daugeliui mokinių ir studentų ši tema atrodo sudėtinga ir nesuprantama, tačiau iš tikrųjų logaritmai nėra tokie baisūs, svarbiausia suprasti jų bendrą prasmę ir atsiminti jų savybes bei kai kurias taisykles. Yra trys atskiri logaritminių išraiškų tipai:

  1. Natūralusis logaritmas ln a, kur bazė yra Eulerio skaičius (e = 2,7).
  2. Dešimtainė a, kur bazė yra 10.
  3. Bet kurio skaičiaus b logaritmas bazei a>1.

Kiekvienas iš jų yra išspręstas standartiniu būdu, įskaitant supaprastinimą, sumažinimą ir vėlesnį redukavimą iki vieno logaritmo naudojant logaritmines teoremas. Norėdami gauti teisingas logaritmų reikšmes, spręsdami turėtumėte atsiminti jų savybes ir veiksmų seką.

Taisyklės ir kai kurie apribojimai

Matematikoje yra keletas taisyklių-apribojimų, kurie priimami kaip aksioma, tai yra, jie nėra diskutuojami ir yra tiesa. Pavyzdžiui, neįmanoma padalyti skaičių iš nulio, taip pat neįmanoma išgauti lygiosios šaknies neigiami skaičiai. Logaritmai taip pat turi savo taisykles, kurių laikydamiesi galite lengvai išmokti dirbti net su ilgomis ir talpiomis logaritminėmis išraiškomis:

  • Bazė „a“ visada turi būti didesnė už nulį, o ne lygi 1, kitaip išraiška praras savo prasmę, nes „1“ ir „0“ bet kokiu laipsniu visada yra lygūs jų reikšmėms;
  • jei a > 0, tai a b >0, pasirodo, kad „c“ taip pat turi būti didesnis už nulį.

Kaip išspręsti logaritmus?

Pavyzdžiui, pateikiama užduotis rasti atsakymą į lygtį 10 x = 100. Tai labai paprasta, reikia pasirinkti laipsnį, padidinant skaičių dešimt, iki kurio gauname 100. Tai, žinoma, yra 10 2 = 100.

Dabar pavaizduokime šią išraišką logaritmine forma. Gauname logaritmą 10 100 = 2. Sprendžiant logaritmus visi veiksmai praktiškai susilieja, kad rastų laipsnį, į kurį reikia įvesti logaritmo bazę, norint gauti duotą skaičių.

Norėdami tiksliai nustatyti nežinomo laipsnio reikšmę, turite išmokti dirbti su laipsnių lentele. Tai atrodo taip:

Kaip matote, kai kuriuos eksponentus galima atspėti intuityviai, jei turite techninį protą ir išmanote daugybos lentelę. Tačiau didesnėms vertėms jums reikės maitinimo stalo. Ją gali naudoti net tie, kurie nieko nežino apie sudėtingas matematines temas. Kairiajame stulpelyje yra skaičiai (bazė a), viršutinė skaičių eilutė yra laipsnio c reikšmė, iki kurios pakeliamas skaičius a. Sankryžoje langeliuose yra skaičių reikšmės, kurios yra atsakymas (a c = b). Paimkime, pavyzdžiui, patį pirmąjį langelį su skaičiumi 10 ir padėkite jį kvadratu, gausime reikšmę 100, kuri yra nurodyta mūsų dviejų langelių sankirtoje. Viskas taip paprasta ir lengva, kad supras net pats tikriausias humanistas!

Lygtys ir nelygybės

Pasirodo, tam tikromis sąlygomis eksponentas yra logaritmas. Todėl bet kurios matematinės skaitinės išraiškos gali būti užrašytos kaip logaritminė lygybė. Pavyzdžiui, 3 4 =81 gali būti parašytas kaip 81 bazinis 3 logaritmas, lygus keturiems (log 3 81 = 4). Už neigiamų galių taisyklės tos pačios: 2 -5 = 1/32 rašome kaip logaritmą, gauname log 2 (1/32) = -5. Viena įdomiausių matematikos skyrių yra „logaritmų“ tema. Žemiau pažvelgsime į lygčių pavyzdžius ir sprendimus, iš karto ištyrę jų savybes. Dabar pažiūrėkime, kaip atrodo nelygybės ir kaip jas atskirti nuo lygčių.

Duota tokios formos išraiška: log 2 (x-1) > 3 – tai yra logaritminė nelygybė, nes nežinoma reikšmė "x" yra po logaritmo ženklu. Taip pat išraiškoje lyginami du dydžiai: norimo skaičiaus logaritmas su baziniu du yra didesnis nei skaičius trys.

Svarbiausias skirtumas tarp logaritminių lygčių ir nelygybių yra tas, kad lygtys su logaritmais (pavyzdžiui, logaritmas 2 x = √9) reiškia vieną ar daugiau konkrečių skaitinių reikšmių atsakyme, o sprendžiant nelygybę, tiek priimtinų intervalų. reikšmės ir taškai nustatomi pažeidžiant šią funkciją. Todėl atsakymas yra ne paprastas atskirų skaičių rinkinys, kaip lygties atsakyme, o ištisinė skaičių seka arba rinkinys.

Pagrindinės teoremos apie logaritmus

Sprendžiant primityvias logaritmo reikšmių radimo užduotis, jo savybės gali būti nežinomos. Tačiau kalbant apie logaritmines lygtis ar nelygybes, pirmiausia reikia aiškiai suprasti ir praktiškai pritaikyti visas pagrindines logaritmų savybes. Vėliau pažvelgsime į lygčių pavyzdžius, pirmiausia pažvelkime į kiekvieną ypatybę išsamiau.

  1. Pagrindinė tapatybė atrodo taip: a logaB =B. Jis taikomas tik tada, kai a yra didesnis nei 0, nelygus vienetui, o B yra didesnis už nulį.
  2. Produkto logaritmą galima pavaizduoti tokia formule: log d (s 1 * s 2) = log d s 1 + log d s 2. Šiuo atveju privaloma sąlyga yra: d, s 1 ir s 2 > 0; a≠1. Galite pateikti šios logaritminės formulės įrodymą su pavyzdžiais ir sprendimu. Tegu log a s 1 = f 1 ir log a s 2 = f 2, tada a f1 = s 1, a f2 = s 2. Gauname, kad s 1 * s 2 = a f1 *a f2 = a f1+f2 (ypatybės laipsniai ), o tada pagal apibrėžimą: log a (s 1 * s 2) = f 1 + f 2 = log a s1 + log a s 2, ką reikėjo įrodyti.
  3. Dalinio logaritmas atrodo taip: log a (s 1/ s 2) = log a s 1 - log a s 2.
  4. Perima formulės formos teorema kitas vaizdas: log a q b n = n/q log a b.

Ši formulė vadinama „logaritmo laipsnio savybe“. Tai primena įprastų laipsnių savybes, ir tai nenuostabu, nes visa matematika remiasi natūraliais postulatais. Pažiūrėkime į įrodymą.

Tegu log a b = t, pasirodo a t =b. Jei abi dalis pakelsime laipsniu m: a tn = b n ;

bet kadangi a tn = (a q) nt/q = b n, todėl log a q b n = (n*t)/t, tada log a q b n = n/q log a b. Teorema įrodyta.

Problemų ir nelygybių pavyzdžiai

Dažniausiai pasitaikančios logaritmų problemos yra lygčių ir nelygybių pavyzdžiai. Jie yra beveik visose probleminėse knygose, taip pat yra privaloma matematikos egzaminų dalis. Dėl stojimo į universitetą arba išlaikymo stojamieji egzaminai matematikoje reikia mokėti teisingai išspręsti tokius uždavinius.

Deja, nėra vieno plano ar schemos, kaip išspręsti ir nustatyti nežinomą logaritmo reikšmę, tačiau kiekvienai matematinei nelygybei ar logaritminei lygčiai gali būti taikomos tam tikros taisyklės. Visų pirma, jūs turėtumėte išsiaiškinti, ar posakis gali būti supaprastintas ar sukelti bendra išvaizda. Galite supaprastinti ilgas logaritmines išraiškas, jei teisingai naudojate jų savybes. Greitai su jais susipažinkime.

Spręsdami logaritmines lygtis turime nustatyti, kokio tipo logaritmą turime: pavyzdinėje išraiškoje gali būti natūralusis logaritmas arba dešimtainis.

Štai pavyzdžiai ln100, ln1026. Jų sprendimas yra susijęs su tuo, kad jiems reikia nustatyti galią, kuriai bazė 10 bus lygi atitinkamai 100 ir 1026. Dėl sprendimų natūralūs logaritmai reikia taikyti logaritmines tapatybes arba jų savybes. Pažvelkime į įvairių tipų logaritminių uždavinių sprendimo pavyzdžius.

Kaip naudotis logaritminėmis formulėmis: su pavyzdžiais ir sprendimais

Taigi, pažvelkime į pagrindinių logaritmų teoremų naudojimo pavyzdžius.

  1. Produkto logaritmo savybė gali būti naudojama atliekant užduotis, kur reikia plėsti puiki vertė skaičius b į paprastesnius veiksnius. Pavyzdžiui, log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. Atsakymas yra 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 - kaip matote, naudojant ketvirtąją logaritmo galios savybę, mums pavyko išspręsti iš pažiūros sudėtingą ir neišsprendžiamą išraišką. Jums tereikia apskaičiuoti bazę ir išimti eksponentų reikšmes iš logaritmo ženklo.

Vieningo valstybinio egzamino užduotys

Logaritmai dažnai aptinkami stojamuosiuose egzaminuose, ypač daug logaritminių uždavinių – vieningame valstybiniame egzamine (valstybinis egzaminas visiems abiturientams). Paprastai šios užduotys pateikiamos ne tik A dalyje (lengviausia egzamino dalis), bet ir C dalyje (sudėtingiausios ir didžiausios užduotys). Egzaminas reikalauja tikslių ir nepriekaištingų temos „Natūralūs logaritmai“ išmanymo.

Pavyzdžiai ir problemų sprendimai paimti iš oficialaus Vieningo valstybinio egzamino parinktys. Pažiūrėkime, kaip tokios užduotys sprendžiamos.

Duotas log 2 (2x-1) = 4. Sprendimas:
perrašykime išraišką, šiek tiek supaprastindami log 2 (2x-1) = 2 2, pagal logaritmo apibrėžimą gauname, kad 2x-1 = 2 4, todėl 2x = 17; x = 8,5.

  • Geriausia visus logaritmus sumažinti iki vienodo pagrindo, kad sprendimas nebūtų sudėtingas ir painus.
  • Visos išraiškos po logaritmo ženklu nurodomos kaip teigiamos, todėl, kai po logaritmo ženklu esančios išraiškos ir jo bazės eksponentas išimamas kaip daugiklis, po logaritmu likusi išraiška turi būti teigiama.