Matematikos fizinių uždavinių ar pavyzdžių sprendimas yra visiškai neįmanomas be išvestinės ir jos skaičiavimo metodų žinių. Išvestinė yra viena iš svarbiausių matematinės analizės sąvokų. Šiandienos straipsnį nusprendėme skirti šiai pagrindinei temai. Kas yra išvestinė, kokia jos fizikinė ir geometrinė reikšmė, kaip apskaičiuoti funkcijos išvestinę? Visus šiuos klausimus galima sujungti į vieną: kaip suprasti išvestinę?

Geometrinė ir fizikinė išvestinės reikšmė

Tegul būna funkcija f(x) , nurodyta tam tikru intervalu (a, b) . Taškai x ir x0 priklauso šiam intervalui. Pasikeitus x, pasikeičia ir pati funkcija. Argumento keitimas – jo vertybių skirtumas x-x0 . Šis skirtumas parašytas kaip delta x ir vadinamas argumentų prieaugiu. Funkcijos pakeitimas arba padidėjimas yra skirtumas tarp funkcijos reikšmių dviejuose taškuose. Išvestinės priemonės apibrėžimas:

Funkcijos išvestinė taške yra funkcijos padidėjimo tam tikrame taške ir argumento prieaugio santykio riba, kai pastarasis linkęs į nulį.

Kitu atveju jis gali būti parašytas taip:

Kokia prasmė rasti tokią ribą? Ir štai kas tai yra:

funkcijos išvestinė taške yra lygi kampo tarp OX ašies ir funkcijos grafiko liestinės liestei duotame taške.


Fizinė prasmė išvestinė: kelio išvestinė laiko atžvilgiu lygi tiesinio judėjimo greičiui.

Iš tiesų, nuo mokyklos laikų visi žino, kad greitis yra tam tikras kelias x=f(t) ir laikas t . Vidutinis greitis tam tikrą laiką:

Norėdami sužinoti judėjimo greitį tam tikru momentu t0 reikia apskaičiuoti ribą:

Pirma taisyklė: nustatykite konstantą

Konstantą galima išimti iš išvestinio ženklo. Be to, tai turi būti padaryta. Spręsdami matematikos pavyzdžius, priimkite tai kaip taisyklę - Jei galite supaprastinti išraišką, būtinai ją supaprastinkite .

Pavyzdys. Apskaičiuokime išvestinę:

Antra taisyklė: funkcijų sumos išvestinė

Dviejų funkcijų sumos išvestinė yra lygi šių funkcijų išvestinių sumai. Tas pats pasakytina ir apie funkcijų skirtumo išvestinę.

Mes nepateiksime šios teoremos įrodymo, o apsvarstysime praktinį pavyzdį.

Raskite funkcijos išvestinę:

Trečia taisyklė: funkcijų sandaugos išvestinė

Dviejų diferencijuojamų funkcijų sandaugos išvestinė apskaičiuojama pagal formulę:

Pavyzdys: suraskite funkcijos išvestinę:

Sprendimas:

Čia svarbu kalbėti apie sudėtingų funkcijų išvestinių skaičiavimą. Darinys sudėtinga funkcija yra lygus šios funkcijos išvestinės sandaugai tarpinio argumento ir tarpinio argumento išvestinei nepriklausomo kintamojo atžvilgiu.

Aukščiau pateiktame pavyzdyje susiduriame su tokia išraiška:

Šiuo atveju tarpinis argumentas yra 8 kartus didesnis už penktą laipsnį. Norėdami apskaičiuoti tokios išraiškos išvestinę, pirmiausia apskaičiuojame išorinės funkcijos išvestinę tarpinio argumento atžvilgiu, o tada padauginame iš paties tarpinio argumento išvestinės nepriklausomo kintamojo atžvilgiu.

Ketvirta taisyklė: dviejų funkcijų dalinio išvestinė

Dviejų funkcijų dalinio išvestinės nustatymo formulė:

Mes bandėme kalbėti apie išvestinius manekenams nuo nulio. Ši tema nėra tokia paprasta, kaip atrodo, todėl perspėkite: pavyzdžiuose dažnai yra spąstų, todėl būkite atsargūs skaičiuodami išvestines.

Jei turite klausimų šia ir kitomis temomis, galite susisiekti su studentų tarnyba. Per trumpą laiką padėsime išspręsti sunkiausią testą ir suprasti užduotis, net jei dar niekada nedarėte išvestinių skaičiavimų.

Šioje pamokoje mokysimės taikyti diferenciacijos formules ir taisykles.

Pavyzdžiai. Raskite funkcijų išvestinius.

1. y=x 7 +x 5 -x 4 +x 3 -x 2 +x-9. Taisyklės taikymas , formulės 4, 2 ir 1. Mes gauname:

y’ = 7x 6 +5x 4 -4x 3 +3x 2 -2x+1.

2. y=3x6 -2x+5. Mes sprendžiame panašiai, naudodami tas pačias formules ir formulę 3.

y’=3∙6x5–2=18x5–2.

Taisyklės taikymas , formulės 3, 5 Ir 6 Ir 1.

Taisyklės taikymas IV, formulės 5 Ir 1 .

Penktame pavyzdyje pagal taisyklę sumos išvestinė lygi išvestinių sumai, o mes ką tik radome 1-ojo nario išvestinę (pavyzdys 4 ), todėl rasime išvestinių 2-oji Ir 3-ioji terminai ir už 1 d sumuoti galime iš karto parašyti rezultatą.

Atskirkime 2-oji Ir 3-ioji terminai pagal formulę 4 . Norėdami tai padaryti, paverčiame vardiklių trečiosios ir ketvirtosios galių šaknis į c laipsnius neigiami rodikliai, o tada iki 4 formulę, randame galių išvestinius.

Pažvelkite į šį pavyzdį ir rezultatą. Ar pagavote modelį? gerai. Tai reiškia, kad turime naują formulę ir galime įtraukti ją į išvestinių išvestinių lentelę.

Išspręskime šeštąjį pavyzdį ir išveskime kitą formulę.

Pasinaudokime taisykle IV ir formulė 4 . Sumažinkime gautas trupmenas.

Pažvelkime į šią funkciją ir jos išvestinę. Jūs, žinoma, suprantate modelį ir esate pasirengę pavadinti formulę:

Mokykitės naujų formulių!

Pavyzdžiai.

1. Raskite argumento prieaugį ir funkcijos y= prieaugį x 2, Jei pradinė vertė argumentas buvo lygus 4 , ir naujas - 4,01 .

Sprendimas.

Nauja argumento reikšmė x=x 0 +Δx. Pakeiskime duomenis: 4.01=4+Δх, taigi argumento prieaugis Δх=4,01-4=0,01. Funkcijos prieaugis pagal apibrėžimą yra lygus skirtumui tarp naujos ir ankstesnės funkcijos reikšmių, t.y. Δy=f (x 0 + Δx) – f (x 0). Kadangi mes turime funkciją y=x2, Tai Δу=(x 0 +Δx) 2 - (x 0) 2 = (x 0) 2 +2x 0 · Δx+(Δx) 2 - (x 0) 2 = 2x 0 · Δx+(Δx) 2 =

2 · 4 · 0,01+(0,01) 2 =0,08+0,0001=0,0801.

Atsakymas: argumentų prieaugis Δх=0,01; funkcijos padidėjimas Δу=0,0801.

Funkcijos prieaugį galima rasti skirtingai: Δy=y (x 0 + Δx) -y (x 0) = y (4,01) -y (4) = 4,01 2 -4 2 = 16,0801-16 = 0,0801.

2. Raskite funkcijos grafiko liestinės polinkio kampą y=f(x) taške x 0, Jei f "(x 0) = 1.

Sprendimas.

Išvestinės vertė liesties taške x 0 ir yra liestinės kampo liestinės reikšmė (geometrinė išvestinės reikšmė). Turime: f "(x 0) = tanα = 1 → α = 45°, nes tg45°=1.

Atsakymas: šios funkcijos grafiko liestinė sudaro kampą, kurio teigiama Ox ašies kryptis lygi 45°.

3. Išveskite funkcijos išvestinės formulę y=xn.

Diferencijavimas yra funkcijos išvestinės radimo veiksmas.

Ieškodami išvestinių, naudokite formules, kurios buvo išvestos remiantis išvestinės apibrėžimu, taip pat, kaip išvedėme išvestinio laipsnio formulę: (x n)" = nx n-1.

Tai yra formulės.

Darinių lentelė Ištarus žodines formuluotes bus lengviau įsiminti:

1. Darinys pastovią vertę lygus nuliui.

2. X pirminis yra lygus vienetui.

3. Pastovų koeficientą galima išimti iš išvestinės ženklo.

4. Laipsnio išvestinė yra lygi šio laipsnio rodiklio sandaugai laipsniu su ta pačia baze, bet rodiklis yra vienu mažesnis.

5. Šaknies išvestinė yra lygi vienetui, padalintam iš dviejų lygių šaknų.

6. Vieneto, padalyto iš x, išvestinė yra lygi minus vienas, padalytas iš x kvadratu.

7. Sinuso išvestinė lygi kosinusui.

8. Kosinuso išvestinė lygi minus sinusui.

9. Liestinės išvestinė lygi vienetui, padalytam iš kosinuso kvadrato.

10. Kotangento išvestinė lygi minus vienas, padalytas iš sinuso kvadrato.

Mes mokome diferenciacijos taisyklės.

1. Algebrinės sumos išvestinė lygi terminų išvestinių algebrinei sumai.

2. Produkto išvestinė yra lygi pirmojo ir antrojo veiksnio išvestinei, pridėjus pirmojo veiksnio ir antrojo išvestinės sandaugai.

3. „Y“ išvestinė, padalyta iš „ve“, yra lygi trupmenai, kurios skaitiklis yra „y pirminis, padaugintas iš „ve“ atėmus „y padaugintas iš ve pirminio“, o vardiklis yra „ve kvadratas“.

4. Ypatingas atvejis formules 3.

Mokykimės kartu!

1 puslapis iš 1 1

Kuriame išnagrinėjome paprasčiausias išvestis, taip pat susipažinome su diferencijavimo taisyklėmis ir kai kuriomis techninėmis išvestinių radimo technikomis. Taigi, jei nesate labai gerai susipažinę su funkcijų išvestiniais arba kai kurie šio straipsnio punktai nėra visiškai aiškūs, pirmiausia perskaitykite aukščiau pateiktą pamoką. Prašau nusiteikti rimtai – medžiaga nėra paprasta, bet vis tiek stengsiuosi ją pateikti paprastai ir aiškiai.

Praktikoje su sudėtingos funkcijos išvestine tenka susidurti labai dažnai, net sakyčiau, beveik visada, kai duodama užduotis surasti išvestines.

Mes žiūrime į lentelę pagal taisyklę (Nr. 5), skirtą sudėtingos funkcijos diferencijavimui:

Išsiaiškinkime. Visų pirma, atkreipkime dėmesį į įrašą. Čia turime dvi funkcijas – ir , o funkcija, vaizdžiai tariant, yra įdėta į funkciją . Šio tipo funkcija (kai viena funkcija įdėta į kitą) vadinama sudėtinga funkcija.

Paskambinsiu funkcijai išorinė funkcija, ir funkcija – vidinė (arba įdėta) funkcija.

! Šie apibrėžimai nėra teoriniai ir neturėtų būti įtraukti į galutinį užduočių planą. Aš naudoju neformalius posakius „išorinė funkcija“, „vidinė“ funkcija tik tam, kad jums būtų lengviau suprasti medžiagą.

Norėdami išsiaiškinti situaciją, apsvarstykite:

1 pavyzdys

Raskite funkcijos išvestinę

Po sinusu turime ne tik raidę „X“, bet ir visą išraišką, todėl išvestinę iš karto rasti nepavyks. Taip pat pastebime, kad čia neįmanoma taikyti pirmųjų keturių taisyklių, atrodo, kad yra skirtumas, tačiau faktas yra tas, kad sinuso negalima „suplėšyti į gabalus“:

Šiame pavyzdyje iš mano paaiškinimų jau intuityviai aišku, kad funkcija yra sudėtinga funkcija, o daugianomas yra vidinė funkcija (įterpimas) ir išorinė funkcija.

Pirmas žingsnis ką reikia padaryti ieškant sudėtingos funkcijos išvestinės suprasti, kuri funkcija yra vidinė, o kuri išorinė.

Tuo atveju paprasti pavyzdžiai Atrodo aišku, kad polinomas yra įterptas po sinusu. Bet ką daryti, jei viskas nėra akivaizdu? Kaip tiksliai nustatyti, kuri funkcija yra išorinė, o kuri vidinė? Norėdami tai padaryti, siūlau naudoti šią techniką, kurią galima atlikti mintyse arba juodraštyje.

Įsivaizduokime, kad reiškinio reikšmei apskaičiuoti reikia naudoti skaičiuotuvą (vietoj vieneto gali būti bet koks skaičius).

Ką pirmiausia skaičiuosime? Visų pirma reikės padaryti sekantis veiksmas: , todėl daugianomas bus vidinė funkcija:

Antra reikės rasti, taigi sinusas – bus išorinė funkcija:

Po mūsų IŠPARDUOTA naudojant vidines ir išorines funkcijas, laikas taikyti sudėtingų funkcijų diferencijavimo taisyklę .

Pradėkime spręsti. Iš pamokos Kaip rasti išvestinę priemonę? prisimename, kad bet kurios išvestinės sprendinio kūrimas visada prasideda taip – ​​išraišką įdedame skliausteliuose, o viršuje dešinėje darome brūkšnį:

Iš pradžių randame išorinės funkcijos išvestinę (sinusą), pažiūrime į elementariųjų funkcijų išvestinių lentelę ir pastebime, kad . Visos lentelės formulės taip pat taikomos, jei „x“ pakeičiamas sudėtinga išraiška, šiuo atveju:

Atkreipkite dėmesį, kad vidinė funkcija nepasikeitė, mes jo neliečiame.

Na, tai gana akivaizdu

Formulės taikymo rezultatas galutine forma jis atrodo taip:

Pastovus koeficientas paprastai dedamas išraiškos pradžioje:

Jei kyla nesusipratimų, užrašykite sprendimą ant popieriaus ir dar kartą perskaitykite paaiškinimus.

2 pavyzdys

Raskite funkcijos išvestinę

3 pavyzdys

Raskite funkcijos išvestinę

Kaip visada, užrašome:

Išsiaiškinkime, kur turime išorinę funkciją, o kur – vidinę. Norėdami tai padaryti, bandome (protiškai arba juodraštyje) apskaičiuoti išraiškos reikšmę . Ką daryti pirmiausia? Visų pirma, reikia apskaičiuoti, kam lygi bazė: todėl daugianomas yra vidinė funkcija:

Ir tik tada atliekamas eksponentiškumas, todėl galios funkcija yra išorinė funkcija:

Pagal formulę , pirmiausia reikia rasti išorinės funkcijos išvestinę, šiuo atveju laipsnį. Lentelėje ieškome reikiamos formulės: . Dar kartą kartojame: bet kuri lentelės formulė galioja ne tik „X“, bet ir sudėtingai išraiškai. Taigi sudėtingos funkcijos diferencijavimo taisyklės taikymo rezultatas kitas:

Dar kartą pabrėžiu, kad imant išorinės funkcijos išvestinę, mūsų vidinė funkcija nesikeičia:

Dabar belieka rasti labai paprastą vidinės funkcijos išvestinį ir šiek tiek pakoreguoti rezultatą:

4 pavyzdys

Raskite funkcijos išvestinę

Tai yra pavyzdys savarankiškas sprendimas(atsakymas pamokos pabaigoje).

Norėdami sustiprinti supratimą apie sudėtingos funkcijos išvestinę, pateiksiu pavyzdį be komentarų, pabandykite tai išsiaiškinti patys, pamąstykite, kur yra išorinė, o kur vidinė funkcija, kodėl užduotys sprendžiamos taip?

5 pavyzdys

a) Raskite funkcijos išvestinę

b) Raskite funkcijos išvestinę

6 pavyzdys

Raskite funkcijos išvestinę

Čia mes turime šaknį, o norint atskirti šaknį, ji turi būti vaizduojama kaip galia. Taigi pirmiausia pateikiame funkciją į diferencijavimui tinkamą formą:

Analizuodami funkciją, darome išvadą, kad trijų narių suma yra vidinė funkcija, o pakėlimas į laipsnį yra išorinė funkcija. Taikome sudėtingų funkcijų diferenciacijos taisyklę :

Laipsnį vėl pavaizduojame kaip radikalą (šaknį), o vidinės funkcijos išvestinei taikome paprastą sumos diferencijavimo taisyklę:

Paruošta. Taip pat galite pateikti išraišką skliausteliuose bendras vardiklis ir viską surašykite kaip vieną trupmeną. Žinoma, gražu, bet kai gaunate gremėzdiškus ilgus darinius, geriau to nedaryti (lengva susipainioti, padaryti nereikalingą klaidą ir mokytojui bus nepatogu patikrinti).

7 pavyzdys

Raskite funkcijos išvestinę

Tai pavyzdys, kurį galite išspręsti patys (atsakykite pamokos pabaigoje).

Įdomu pastebėti, kad kartais vietoj sudėtingos funkcijos diferencijavimo taisyklės galite naudoti koeficiento diferencijavimo taisyklę , tačiau toks sprendimas atrodys kaip neįprastas iškrypimas. Čia tipinis pavyzdys:

8 pavyzdys

Raskite funkcijos išvestinę

Čia galite naudoti koeficiento diferencijavimo taisyklę , tačiau daug pelningiau išvestinę rasti taikant sudėtingos funkcijos diferenciacijos taisyklę:

Paruošiame funkciją diferencijuoti - iš išvestinio ženklo iškeliame minusą, o kosinusą keliame į skaitiklį:

Kosinusas yra vidinė funkcija, eksponencija yra išorinė funkcija.
Pasinaudokime savo taisykle :

Randame vidinės funkcijos išvestinę ir iš naujo nustatome kosinusą žemyn:

Paruošta. Nagrinėtame pavyzdyje svarbu nesupainioti ženkluose. Beje, pabandykite tai išspręsti naudodami taisyklę , atsakymai turi sutapti.

9 pavyzdys

Raskite funkcijos išvestinę

Tai pavyzdys, kurį galite išspręsti patys (atsakykite pamokos pabaigoje).

Iki šiol nagrinėjome atvejus, kai sudėtingoje funkcijoje turėjome tik vieną lizdą. Praktinėse užduotyse dažnai galima rasti išvestinių, kur, kaip ir lėlės, viena kitos viduje, vienu metu įdėtos 3 ar net 4-5 funkcijos.

10 pavyzdys

Raskite funkcijos išvestinę

Supraskime šios funkcijos priedus. Pabandykime apskaičiuoti išraišką naudodami eksperimentinę reikšmę. Kaip suskaičiuotume skaičiuotuvą?

Pirmiausia turite rasti , o tai reiškia, kad arcsinusas yra giliausias įterpimas:

Tada šis vieno arcsinusas turėtų būti padalytas kvadratu:

Ir galiausiai septynis padidiname iki galios:

Tai yra, šiame pavyzdyje turime tris skirtingos funkcijos ir du įterpimai, kurių vidinė funkcija yra arcsininė, o išorinė – eksponentinė funkcija.

Pradėkime spręsti

Pagal taisyklę Pirmiausia reikia paimti išorinės funkcijos išvestinę. Žiūrime į išvestinių lentelę ir randame eksponentinės funkcijos išvestinę: Vienintelis skirtumas yra tas, kad vietoj „x“ turime sudėtinga išraiška, kuri nepaneigia šios formulės galiojimo. Taigi, sudėtingos funkcijos diferencijavimo taisyklės taikymo rezultatas kitas.

Apibrėžimas. Tegul funkcija \(y = f(x)\) yra apibrėžta tam tikrame intervale, kurio viduje yra taškas \(x_0\). Suteikime argumentui prieaugį \(\Delta x \), kad jis nepaliktų šio intervalo. Raskime atitinkamą funkcijos \(\Delta y \) prieaugį (judėdami iš taško \(x_0 \) į tašką \(x_0 + \Delta x \)) ir sudarykime ryšį \(\frac(\Delta y)(\Delta x) \). Jei šio santykio riba yra \(\Delta x \rightarrow 0\), tada nurodyta riba vadinama funkcijos išvestinė\(y=f(x) \) taške \(x_0 \) ir pažymėkite \(f"(x_0) \).

$$ \lim_(\Delta x \iki 0) \frac(\Delta y)(\Delta x) = f"(x_0) $$

Simbolis y dažnai naudojamas išvestinei žymėti. Atkreipkite dėmesį, kad y" = f(x) yra nauja funkcija, tačiau natūraliai susijusi su funkcija y = f(x), apibrėžta visuose x taškuose, kuriuose egzistuoja aukščiau nurodyta riba. Ši funkcija vadinama taip: funkcijos y = f(x) išvestinė.

Geometrinė išvestinės reikšmė yra taip. Jeigu galima nubrėžti funkcijos y = f(x) grafiko liestinę taške su abscise x=a, kuris nėra lygiagretus y ašiai, tai f(a) išreiškia liestinės nuolydį :
\(k = f"(a)\)

Kadangi \(k = tg(a) \), tai lygybė \(f"(a) = tan(a) \) yra teisinga.

Dabar interpretuokime išvestinės apibrėžimą apytikslių lygybių požiūriu. Tegul funkcija \(y = f(x)\) turi išvestinę konkrečiame taške \(x\):
$$ \lim_(\Delta x \iki 0) \frac(\Delta y)(\Delta x) = f"(x) $$
Tai reiškia, kad šalia taško x apytikslė lygybė \(\frac(\Delta y)(\Delta x) \approx f"(x)\), t.y. \(\Delta y \approx f"(x) \cdot\ Delta x\). Gautos apytikslės lygybės prasminga reikšmė yra tokia: funkcijos prieaugis yra „beveik proporcingas“ argumento prieaugiui, o proporcingumo koeficientas yra išvestinės vertė duotas taškas X. Pavyzdžiui, funkcijai \(y = x^2\) galioja apytikslė lygybė \(\Delta y \approx 2x \cdot \Delta x \). Jei atidžiai išanalizuosime išvestinės apibrėžimą, pamatysime, kad jame yra algoritmas, kaip jį rasti.

Suformuluokime.

Kaip rasti funkcijos y = f(x) išvestinę?

1. Pataisykite \(x\) reikšmę, raskite \(f(x)\)
2. Suteikite argumentui \(x\) prieaugį \(\Delta x\), eikite į naują tašką \(x+ \Delta x \), raskite \(f(x+ \Delta x) \)
3. Raskite funkcijos prieaugį: \(\Delta y = f(x + \Delta x) - f(x) \)
4. Sukurkite ryšį \(\frac(\Delta y)(\Delta x) \)
5. Apskaičiuokite $$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) $$
Ši riba yra funkcijos taške x išvestinė.

Jei funkcija y = f(x) turi išvestinę taške x, tada ji vadinama diferencijuojama taške x. Iškviečiama funkcijos y = f(x) išvestinės radimo procedūra diferenciacija funkcijos y = f(x).

Aptarkime tokį klausimą: kaip funkcijos tęstinumas ir diferencijuotumas taške yra susiję vienas su kitu?

Tegul funkcija y = f(x) taške x yra diferencijuojama. Tada funkcijos grafiko taške M(x; f(x)) galima nubrėžti liestinę ir, prisiminkime, liestinės kampinis koeficientas yra lygus f "(x). Toks grafikas negali "nutrūkti" taške M, ty funkcija taške x turi būti ištisinė.

Tai buvo „rankiniai“ argumentai. Pateikime griežtesnį samprotavimą. Jei funkcija y = f(x) yra diferencijuojama taške x, galioja apytikslė lygybė \(\Delta y \approx f"(x) \cdot \Delta x\). Jei šioje lygybėje \(\Delta x) \) linkęs į nulį, tada \(\Delta y \) bus linkęs į nulį, ir tai yra funkcijos tęstinumo taške sąlyga.

Taigi, jei funkcija yra diferencijuojama taške x, tai tame taške ji yra tolydi.

Atvirkščias teiginys nėra teisingas. Pavyzdžiui: funkcija y = |x| yra ištisinis visur, ypač taške x = 0, bet funkcijos grafiko liestinė "sandūros taške" (0; 0) neegzistuoja. Jei tam tikru momentu funkcijos grafiko liestinės negalima nubrėžti, tai išvestinė tame taške neegzistuoja.

Kitas pavyzdys. Funkcija \(y=\sqrt(x)\) yra ištisinė visoje skaičių tiesėje, įskaitant tašką x = 0. O funkcijos grafiko liestinė egzistuoja bet kuriame taške, įskaitant tašką x = 0 Bet šiuo metu liestinė sutampa su y ašimi, ty ji yra statmena abscisių ašiai, jos lygtis yra x = 0. Nuolydžio koeficientas tokios eilutės nėra, tai reiškia, kad \(f"(0) \) taip pat nėra

Taigi, susipažinome su nauja funkcijos savybe – diferenciacija. Kaip iš funkcijos grafiko galima daryti išvadą, kad ji yra diferencijuojama?

Atsakymas iš tikrųjų pateiktas aukščiau. Jei tam tikru momentu galima nubrėžti funkcijos grafiko liestinę, kuri nėra statmena abscisių ašiai, tai šioje vietoje funkcija yra diferencijuojama. Jei tam tikru momentu funkcijos grafiko liestinė neegzistuoja arba ji yra statmena abscisių ašiai, tai šiuo metu funkcija nediferencijuojama.

Diferencijavimo taisyklės

Išvestinės radimo operacija vadinama diferenciacija. Atliekant šią operaciją dažnai tenka dirbti su koeficientais, sumomis, funkcijų sandaugomis, taip pat su „funkcijų funkcijomis“, tai yra su sudėtingomis funkcijomis. Remdamiesi išvestinės apibrėžimu, galime išvesti diferencijavimo taisykles, kurios palengvina šį darbą. Jei C yra pastovus skaičius, o f=f(x), g=g(x) yra kai kurios diferencijuojamos funkcijos, tai teisinga diferenciacijos taisyklės:

$$ C"=0 $$ $$ x"=1 $$ $$ (f+g)"=f"+g" $$ $$ (fg)"=f"g + fg" $$ $$ ( Cf)"=Cf" $$ $$ \left(\frac(f)(g) \right) " = \frac(f"g-fg")(g^2) $$ $$ \left(\frac (C)(g) \right) " = -\frac(Cg")(g^2) $$ Sudėtingos funkcijos išvestinė:
$$ f"_x(g(x)) = f"_g \cdot g"_x $$

Kai kurių funkcijų išvestinių lentelė

$$ \left(\frac(1)(x) \right) " = -\frac(1)(x^2) $$ $$ (\sqrt(x)) " = \frac(1)(2\ sqrt(x)) $$ $$ \left(x^a \right) " = a x^(a-1) $$ $$ \left(a^x \right) " = a^x \cdot \ln a $$ $$ \left(e^x \right) " = e^x $$ $$ (\ln x)" = \frac(1)(x) $$ $$ (\log_a x)" = \frac (1)(x\ln a) $$ $$ (\sin x)" = \cos x $$ $$ (\cos x)" = -\sin x $$ $$ (\text(tg) x) " = \frac(1)(\cos^2 x) $$ $$ (\text(ctg) x)" = -\frac(1)(\sin^2 x) $$ $$ (\arcsin x) " = \frac(1)(\sqrt(1-x^2)) $$ $$ (\arccos x)" = \frac(-1)(\sqrt(1-x^2)) $$ $$ (\text(arctg) x)" = \frac(1)(1+x^2) $$ $$ (\text(arcctg) x)" = \frac(-1)(1+x^2) $ $