pagrindinės savybės.

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

identiškais pagrindais

Log6 4 + log6 9.

Dabar šiek tiek apsunkinkime užduotį.

Logaritmų sprendimo pavyzdžiai

Ką daryti, jei logaritmo pagrindas arba argumentas yra laipsnis? Tada šio laipsnio rodiklis gali būti paimtas iš logaritmo ženklo pagal šias taisykles:

Žinoma, visos šios taisyklės turi prasmę, jei laikomasi logaritmo ODZ: a > 0, a ≠ 1, x >

Užduotis. Raskite posakio prasmę:

Perėjimas prie naujo pagrindo

Tegul tai duota logaritmo žurnalas kirvis. Tada bet kurio skaičiaus c, kurio c > 0 ir c ≠ 1, lygybė yra teisinga:

Užduotis. Raskite posakio prasmę:

Taip pat žiūrėkite:


Pagrindinės logaritmo savybės

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Rodiklis yra 2,718281828…. Norėdami prisiminti eksponentą, galite išstudijuoti taisyklę: eksponentas yra lygus 2,7 ir du kartus už Levo Nikolajevičiaus Tolstojaus gimimo metus.

Pagrindinės logaritmų savybės

Žinodami šią taisyklę, žinosite ir tikslią eksponento vertę, ir Levo Tolstojaus gimimo datą.


Logaritmų pavyzdžiai

Logaritminės išraiškos

1 pavyzdys.
A). x=10ac^2 (a>0,c>0).

Naudodami savybes 3.5 apskaičiuojame

2.

3.

4. Kur .



2 pavyzdys. Raskite x jei


3 pavyzdys. Pateikiame logaritmų reikšmę

Apskaičiuokite log(x), jei




Pagrindinės logaritmų savybės

Logaritmus, kaip ir bet kokius skaičius, galima visais būdais sudėti, atimti ir transformuoti. Bet kadangi logaritmai nėra visiškai įprasti skaičiai, čia yra taisyklės, kurios vadinamos pagrindinės savybės.

Jūs tikrai turite žinoti šias taisykles – be jų nepavyks išspręsti nė vienos rimtos logaritminės problemos. Be to, jų labai mažai – viską gali išmokti per vieną dieną. Taigi pradėkime.

Logaritmų pridėjimas ir atėmimas

Apsvarstykite du logaritmus su tomis pačiomis bazėmis: logax ir logay. Tada juos galima pridėti ir atimti, ir:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

Taigi logaritmų suma lygi sandaugos logaritmui, o skirtumas lygus koeficiento logaritmui. Atkreipkite dėmesį: pagrindinis taškasČia - identiškais pagrindais. Jei priežastys skiriasi, šios taisyklės neveikia!

Šios formulės padės jums apskaičiuoti logaritminė išraiška net kai atskiros jo dalys neskaičiuojamos (žr. pamoką „Kas yra logaritmas“). Pažvelkite į pavyzdžius ir pamatykite:

Kadangi logaritmai turi tas pačias bazes, naudojame sumos formulę:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Užduotis. Raskite išraiškos reikšmę: log2 48 − log2 3.

Pagrindai yra vienodi, mes naudojame skirtumo formulę:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Užduotis. Raskite išraiškos reikšmę: log3 135 − log3 5.

Vėlgi bazės yra tos pačios, todėl turime:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Kaip matote, pradinės išraiškos yra sudarytos iš „blogų“ logaritmų, kurie nėra skaičiuojami atskirai. Bet po transformacijų gaunami visiškai normalūs skaičiai. Daugelis testų yra pagrįsti šiuo faktu. Taip, vieningo valstybinio egzamino metu į testus panašūs posakiai siūlomi labai rimtai (kartais praktiškai be pakeitimų).

Rodiklio išskyrimas iš logaritmo

Nesunku pastebėti, kad paskutinė taisyklė seka pirmąsias dvi. Bet vis tiek geriau tai atsiminti - kai kuriais atvejais tai žymiai sumažins skaičiavimų skaičių.

Žinoma, visos šios taisyklės turi prasmę, jei laikomasi logaritmo ODZ: a > 0, a ≠ 1, x > 0. Ir dar vienas dalykas: išmokite taikyti visas formules ne tik iš kairės į dešinę, bet ir atvirkščiai , t.y. Skaičius prieš logaritmo ženklą galite įvesti į patį logaritmą. Tai yra tai, ko dažniausiai reikia.

Užduotis. Raskite išraiškos reikšmę: log7 496.

Atsikratykime argumento laipsnio naudodami pirmąją formulę:
log7 496 = 6 log7 49 = 6 2 = 12

Užduotis. Raskite posakio prasmę:

Atkreipkite dėmesį, kad vardiklyje yra logaritmas, kurio pagrindas ir argumentas yra tikslios galios: 16 = 24; 49 = 72. Turime:

Manau, kad paskutinis pavyzdys reikalauja šiek tiek paaiškinimo. Kur dingo logaritmai? Iki pat paskutinės akimirkos dirbame tik su vardikliu.

Logaritminės formulės. Logaritmų sprendimų pavyzdžiai.

Pateikėme ten stovinčio logaritmo bazę ir argumentą galių pavidalu ir išėmėme eksponentus - gavome „trijų aukštų“ trupmeną.

Dabar pažvelkime į pagrindinę dalį. Skaitiklyje ir vardiklyje yra tas pats skaičius: log2 7. Kadangi log2 7 ≠ 0, tai trupmeną galime sumažinti – vardiklyje liks 2/4. Pagal aritmetikos taisykles keturis galima perkelti į skaitiklį, kas buvo padaryta. Rezultatas buvo atsakymas: 2.

Perėjimas prie naujo pagrindo

Kalbėdamas apie logaritmų sudėjimo ir atėmimo taisykles, konkrečiai pabrėžiau, kad jos veikia tik su tais pačiais pagrindais. O jei priežastys kitokios? O jei jie nėra tikslūs to paties skaičiaus laipsniai?

Į pagalbą ateina perėjimo prie naujo pagrindo formulės. Suformuluokime juos teoremos forma:

Pateikiame logaritmo logaksą. Tada bet kurio skaičiaus c, kurio c > 0 ir c ≠ 1, lygybė yra teisinga:

Konkrečiai, jei nustatome c = x, gauname:

Iš antrosios formulės išplaukia, kad logaritmo bazę ir argumentą galima sukeisti vietomis, tačiau tokiu atveju „apverčiama“ visa išraiška, t.y. vardiklyje atsiranda logaritmas.

Šios formulės retai sutinkamos įprastose skaitinės išraiškos. Įvertinti, kiek jos patogios, galima tik sprendžiant logaritmines lygtis ir nelygybes.

Tačiau yra problemų, kurių niekaip nepavyks išspręsti, išskyrus persikėlimą į naują fondą. Pažvelkime į porą iš šių:

Užduotis. Raskite išraiškos reikšmę: log5 16 log2 25.

Atkreipkite dėmesį, kad abiejų logaritmų argumentuose yra tikslios galios. Išimkime rodiklius: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Dabar „apverskime“ antrąjį logaritmą:

Kadangi sandauga nesikeičia keičiant veiksnius, ramiai padauginome keturis ir du, o tada nagrinėjome logaritmus.

Užduotis. Raskite išraiškos reikšmę: log9 100 lg 3.

Pirmojo logaritmo pagrindas ir argumentas yra tikslios galios. Užsirašykime tai ir atsikratykime rodiklių:

Dabar atsikratykime dešimtainio logaritmo, pereidami prie naujos bazės:

Pagrindinė logaritminė tapatybė

Dažnai sprendimo procese skaičių reikia pateikti kaip logaritmą tam tikram pagrindui. Šiuo atveju mums padės šios formulės:

Pirmuoju atveju skaičius n tampa veiksniu argumente. Skaičius n gali būti visiškai bet koks, nes tai tik logaritmo reikšmė.

Antroji formulė iš tikrųjų yra perfrazuotas apibrėžimas. Taip jis vadinasi:.

Tiesą sakant, kas atsitiks, jei skaičius b padidintas iki tokios laipsnio, kad skaičius b iki šios laipsnio duotų skaičių a? Teisingai: rezultatas yra tas pats skaičius a. Dar kartą atidžiai perskaitykite šią pastraipą – daugeliui žmonių ji užstringa.

Kaip ir formulės, skirtos pereiti prie naujos bazės, pagrindinė logaritminė tapatybė kartais yra vienintelis galimas sprendimas.

Užduotis. Raskite posakio prasmę:

Atkreipkite dėmesį, kad log25 64 = log5 8 – tiesiog paėmė kvadratą iš logaritmo pagrindo ir argumento. Atsižvelgiant į galių dauginimo taisykles tuo pačiu pagrindu, gauname:

Jei kas nežino, tai buvo tikra užduotis iš unifikuoto valstybinio egzamino :)

Logaritminis vienetas ir logaritminis nulis

Baigdamas pateiksiu dvi tapatybes, kurias vargu ar galima pavadinti savybėmis – veikiau tai yra logaritmo apibrėžimo pasekmės. Jie nuolat atsiranda problemų ir, stebėtinai, sukelia problemų net „pažengusiems“ studentams.

  1. logaa = 1 yra. Vieną kartą ir visiems laikams atsiminkite: logaritmas bet kuriam tos bazės pagrindui a yra lygus vienetui.
  2. loga 1 = 0 yra. Bazė a gali būti bet kokia, bet jei argumente yra vienas, logaritmas lygus nuliui! Kadangi a0 = 1 yra tiesioginė apibrėžimo pasekmė.

Tai visos savybės. Būtinai praktikuokite juos pritaikydami praktiškai! Pamokos pradžioje atsisiųskite cheat lapą, atsispausdinkite ir išspręskite problemas.

Taip pat žiūrėkite:

B logaritmas iki a pagrindo reiškia išraišką. Apskaičiuoti logaritmą reiškia rasti laipsnį x (), kuriai esant lygybė tenkinama

Pagrindinės logaritmo savybės

Būtina žinoti aukščiau pateiktas savybes, nes jų pagrindu išsprendžiamos beveik visos su logaritmais susijusios problemos ir pavyzdžiai. Likusias egzotines savybes galima gauti matematiškai manipuliuojant šiomis formulėmis

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

Skaičiuodami logaritmų sumos ir skirtumo formulę (3.4) susiduri gana dažnai. Likusieji yra šiek tiek sudėtingi, tačiau atliekant daugybę užduočių jie yra būtini norint supaprastinti sudėtingas išraiškas ir apskaičiuoti jų reikšmes.

Dažni logaritmų atvejai

Kai kurie iš labiausiai paplitusių logaritmų yra tie, kurių bazė yra lygi dešimčiai, eksponentinė arba dvi.
Logaritmas iki dešimties pagrindo paprastai vadinamas dešimtainiu logaritmu ir tiesiog žymimas lg(x).

Iš įrašo aišku, kad pagrindai įraše neparašyti. Pavyzdžiui

Natūralusis logaritmas yra logaritmas, kurio bazė yra eksponentas (žymimas ln(x)).

Rodiklis yra 2,718281828…. Norėdami prisiminti eksponentą, galite išstudijuoti taisyklę: eksponentas yra lygus 2,7 ir du kartus už Levo Nikolajevičiaus Tolstojaus gimimo metus. Žinodami šią taisyklę, žinosite ir tikslią eksponento vertę, ir Levo Tolstojaus gimimo datą.

Ir dar vienas svarbus logaritmas dviem pagrindams žymimas

Funkcijos logaritmo išvestinė lygi vienetui, padalytam iš kintamojo

Integralinis arba antiderivinis logaritmas nustatomas pagal ryšį

Pateiktos medžiagos pakanka, kad išspręstumėte plačią su logaritmais ir logaritmais susijusių problemų klasę. Kad padėčiau suprasti medžiagą, pateiksiu tik keletą bendrų pavyzdžių iš mokyklos programos ir universitetų.

Logaritmų pavyzdžiai

Logaritminės išraiškos

1 pavyzdys.
A). x=10ac^2 (a>0,c>0).

Naudodami savybes 3.5 apskaičiuojame

2.
Pagal logaritmų skirtumo savybę turime

3.
Naudodami savybes 3.5 randame

4. Kur .

Pagal išvaizdą sudėtinga išraiška naudojant keletą taisyklių yra supaprastinta forma

Logaritmo reikšmių paieška

2 pavyzdys. Raskite x jei

Sprendimas. Skaičiavimui taikome paskutinio termino 5 ir 13 savybių

Įrašome tai ir gedime

Kadangi bazės yra lygios, išraiškas sulyginame

Logaritmai. Pradinis lygis.

Pateikiame logaritmų reikšmę

Apskaičiuokite log(x), jei

Sprendimas: Paimkime kintamojo logaritmą, kad užrašytume logaritmą per jo terminų sumą


Tai tik mūsų pažinties su logaritmais ir jų savybėmis pradžia. Praktikuokite skaičiavimus, praturtinkite savo praktinius įgūdžius – greitai jums prireiks įgytų žinių sprendžiant logaritmines lygtis. Išstudijavę pagrindinius tokių lygčių sprendimo būdus, jūsų žinias išplėsime į kitą ne mažiau svarbią temą - logaritmines nelygybes...

Pagrindinės logaritmų savybės

Logaritmus, kaip ir bet kokius skaičius, galima visais būdais sudėti, atimti ir transformuoti. Bet kadangi logaritmai nėra visiškai įprasti skaičiai, čia yra taisyklės, kurios vadinamos pagrindinės savybės.

Jūs tikrai turite žinoti šias taisykles – be jų nepavyks išspręsti nė vienos rimtos logaritminės problemos. Be to, jų labai mažai – viską gali išmokti per vieną dieną. Taigi pradėkime.

Logaritmų pridėjimas ir atėmimas

Apsvarstykite du logaritmus su tomis pačiomis bazėmis: logax ir logay. Tada juos galima pridėti ir atimti, ir:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

Taigi logaritmų suma lygi sandaugos logaritmui, o skirtumas lygus koeficiento logaritmui. Atkreipkite dėmesį: pagrindinis dalykas čia yra identiškais pagrindais. Jei priežastys skiriasi, šios taisyklės neveikia!

Šios formulės padės apskaičiuoti logaritminę išraišką net tada, kai neatsižvelgiama į atskiras jos dalis (žr. pamoką „Kas yra logaritmas“). Pažvelkite į pavyzdžius ir pamatykite:

Užduotis. Raskite išraiškos reikšmę: log6 4 + log6 9.

Kadangi logaritmai turi tas pačias bazes, naudojame sumos formulę:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Užduotis. Raskite išraiškos reikšmę: log2 48 − log2 3.

Pagrindai yra vienodi, mes naudojame skirtumo formulę:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Užduotis. Raskite išraiškos reikšmę: log3 135 − log3 5.

Vėlgi bazės yra tos pačios, todėl turime:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Kaip matote, pradinės išraiškos yra sudarytos iš „blogų“ logaritmų, kurie nėra skaičiuojami atskirai. Bet po transformacijų gaunami visiškai normalūs skaičiai. Daugelis testų yra pagrįsti šiuo faktu. Taip, vieningo valstybinio egzamino metu į testus panašūs posakiai siūlomi labai rimtai (kartais praktiškai be pakeitimų).

Rodiklio išskyrimas iš logaritmo

Dabar šiek tiek apsunkinkime užduotį. Ką daryti, jei logaritmo pagrindas arba argumentas yra laipsnis? Tada šio laipsnio rodiklis gali būti paimtas iš logaritmo ženklo pagal šias taisykles:

Nesunku pastebėti, kad paskutinė taisyklė seka pirmąsias dvi. Bet vis tiek geriau tai atsiminti - kai kuriais atvejais tai žymiai sumažins skaičiavimų skaičių.

Žinoma, visos šios taisyklės turi prasmę, jei laikomasi logaritmo ODZ: a > 0, a ≠ 1, x > 0. Ir dar vienas dalykas: išmokite taikyti visas formules ne tik iš kairės į dešinę, bet ir atvirkščiai , t.y. Skaičius prieš logaritmo ženklą galite įvesti į patį logaritmą.

Kaip išspręsti logaritmus

Tai yra tai, ko dažniausiai reikia.

Užduotis. Raskite išraiškos reikšmę: log7 496.

Atsikratykime argumento laipsnio naudodami pirmąją formulę:
log7 496 = 6 log7 49 = 6 2 = 12

Užduotis. Raskite posakio prasmę:

Atkreipkite dėmesį, kad vardiklyje yra logaritmas, kurio pagrindas ir argumentas yra tikslios galios: 16 = 24; 49 = 72. Turime:

Manau, kad paskutinis pavyzdys reikalauja šiek tiek paaiškinimo. Kur dingo logaritmai? Iki pat paskutinės akimirkos dirbame tik su vardikliu. Pateikėme ten stovinčio logaritmo bazę ir argumentą galių pavidalu ir išėmėme eksponentus - gavome „trijų aukštų“ trupmeną.

Dabar pažvelkime į pagrindinę dalį. Skaitiklyje ir vardiklyje yra tas pats skaičius: log2 7. Kadangi log2 7 ≠ 0, tai trupmeną galime sumažinti – vardiklyje liks 2/4. Pagal aritmetikos taisykles keturis galima perkelti į skaitiklį, kas buvo padaryta. Rezultatas buvo atsakymas: 2.

Perėjimas prie naujo pagrindo

Kalbėdamas apie logaritmų sudėjimo ir atėmimo taisykles, konkrečiai pabrėžiau, kad jos veikia tik su tais pačiais pagrindais. O jei priežastys kitokios? O jei jie nėra tikslūs to paties skaičiaus laipsniai?

Į pagalbą ateina perėjimo prie naujo pagrindo formulės. Suformuluokime juos teoremos forma:

Pateikiame logaritmo logaksą. Tada bet kurio skaičiaus c, kurio c > 0 ir c ≠ 1, lygybė yra teisinga:

Konkrečiai, jei nustatome c = x, gauname:

Iš antrosios formulės išplaukia, kad logaritmo bazę ir argumentą galima sukeisti vietomis, tačiau tokiu atveju „apverčiama“ visa išraiška, t.y. vardiklyje atsiranda logaritmas.

Šios formulės retai randamos įprastose skaitinėse išraiškose. Įvertinti, kiek jos patogios, galima tik sprendžiant logaritmines lygtis ir nelygybes.

Tačiau yra problemų, kurių niekaip nepavyks išspręsti, išskyrus persikėlimą į naują fondą. Pažvelkime į porą iš šių:

Užduotis. Raskite išraiškos reikšmę: log5 16 log2 25.

Atkreipkite dėmesį, kad abiejų logaritmų argumentuose yra tikslios galios. Išimkime rodiklius: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Dabar „apverskime“ antrąjį logaritmą:

Kadangi sandauga nesikeičia keičiant veiksnius, ramiai padauginome keturis ir du, o tada nagrinėjome logaritmus.

Užduotis. Raskite išraiškos reikšmę: log9 100 lg 3.

Pirmojo logaritmo pagrindas ir argumentas yra tikslios galios. Užsirašykime tai ir atsikratykime rodiklių:

Dabar atsikratykime dešimtainio logaritmo, pereidami prie naujos bazės:

Pagrindinė logaritminė tapatybė

Dažnai sprendimo procese skaičių reikia pateikti kaip logaritmą tam tikram pagrindui. Šiuo atveju mums padės šios formulės:

Pirmuoju atveju skaičius n tampa veiksniu argumente. Skaičius n gali būti visiškai bet koks, nes tai tik logaritmo reikšmė.

Antroji formulė iš tikrųjų yra perfrazuotas apibrėžimas. Taip jis vadinasi:.

Tiesą sakant, kas atsitiks, jei skaičius b padidintas iki tokios laipsnio, kad skaičius b iki šios laipsnio duotų skaičių a? Teisingai: rezultatas yra tas pats skaičius a. Dar kartą atidžiai perskaitykite šią pastraipą – daugeliui žmonių ji užstringa.

Kaip ir formulės, skirtos pereiti prie naujos bazės, pagrindinė logaritminė tapatybė kartais yra vienintelis galimas sprendimas.

Užduotis. Raskite posakio prasmę:

Atkreipkite dėmesį, kad log25 64 = log5 8 – tiesiog paėmė kvadratą iš logaritmo pagrindo ir argumento. Atsižvelgdami į galių dauginimo iš tos pačios bazės taisykles, gauname:

Jei kas nežino, tai buvo tikra užduotis iš unifikuoto valstybinio egzamino :)

Logaritminis vienetas ir logaritminis nulis

Baigdamas pateiksiu dvi tapatybes, kurias vargu ar galima pavadinti savybėmis – veikiau tai yra logaritmo apibrėžimo pasekmės. Jie nuolat atsiranda problemų ir, stebėtinai, sukelia problemų net „pažengusiems“ studentams.

  1. logaa = 1 yra. Vieną kartą ir visiems laikams atsiminkite: logaritmas bet kuriam tos bazės pagrindui a yra lygus vienetui.
  2. loga 1 = 0 yra. Bazė a gali būti bet kokia, bet jei argumente yra vienas, logaritmas lygus nuliui! Kadangi a0 = 1 yra tiesioginė apibrėžimo pasekmė.

Tai visos savybės. Būtinai praktikuokite juos pritaikydami praktiškai! Pamokos pradžioje atsisiųskite cheat lapą, atsispausdinkite ir išspręskite problemas.

Skaičiaus logaritmas N remiantis A vadinamas eksponentu X , prie kurios reikia statyti A norėdami gauti numerį N

Su sąlyga, kad
,
,

Iš logaritmo apibrėžimo išplaukia, kad
, t.y.
- ši lygybė yra pagrindinė logaritminė tapatybė.

Logaritmai iki 10 bazės vadinami dešimtainiais logaritmais. Vietoj to
rašyti
.

Logaritmai iki pagrindo e yra vadinami natūraliais ir yra paskirti
.

Pagrindinės logaritmų savybės.

    Vieneto logaritmas yra lygus nuliui bet kuriai bazei.

    Produkto logaritmas lygus faktorių logaritmų sumai.

3) koeficiento logaritmas lygus logaritmų skirtumui


veiksnys
vadinamas perėjimo iš logaritmų į bazę moduliu a prie logaritmų bazėje b .

Naudojant 2–5 savybes, dažnai galima sumažinti sudėtingos išraiškos logaritmą iki paprastų aritmetinių logaritmų operacijų rezultato.

Pavyzdžiui,

Tokios logaritmo transformacijos vadinamos logaritmais. Transformacijos, atvirkštinės logaritmui, vadinamos potenciacija.

2 skyrius. Aukštosios matematikos elementai.

1. Ribos

Funkcijos riba
yra baigtinis skaičius A, jei, kaip xx 0 už kiekvieną iš anksto nustatytą
, yra toks skaičius
kad kai tik
, Tai
.

Funkcija, turinti ribą, skiriasi nuo jos be galo mažu dydžiu:
, kur- b.m.v., t.y.
.

Pavyzdys. Apsvarstykite funkciją
.

Kai stengiamasi
, funkcija y linkęs į nulį:

1.1. Pagrindinės teoremos apie ribas.

    Riba pastovią vertę lygus šiai pastoviai vertei

.

    Baigtinio skaičiaus funkcijų sumos (skirtumo) riba yra lygi šių funkcijų ribų sumai (skirtumui).

    Baigtinio skaičiaus funkcijų sandaugos riba yra lygi šių funkcijų ribų sandaugai.

    Dviejų funkcijų koeficiento riba yra lygi šių funkcijų ribų daliniui, jei vardiklio riba nėra lygi nuliui.

Nuostabios ribos

,
, Kur

1.2. Ribų skaičiavimo pavyzdžiai

Tačiau ne visos ribos taip lengvai apskaičiuojamos. Dažniau apskaičiuojant ribą atskleidžiamas tipo neapibrėžtumas: arba .

.

2. Funkcijos išvestinė

Leiskite mums atlikti funkciją
, ištisinis segmente
.

Argumentas šiek tiek padidėjo
. Tada funkcija gaus prieaugį
.

Argumento vertė atitinka funkcijos reikšmę
.

Argumento vertė
atitinka funkcijos reikšmę.

Vadinasi,.

Raskime šio santykio ribą ties
. Jei ši riba egzistuoja, tada ji vadinama duotosios funkcijos išvestine.

3 apibrėžimas Nurodytos funkcijos išvestinė
argumentu vadinama funkcijos didėjimo ir argumento prieaugio santykio riba, kai argumento prieaugis savavališkai linksta į nulį.

Funkcijos išvestinė
gali būti žymimas taip:

; ; ; .

4 apibrėžimas Funkcijos išvestinės radimo operacija vadinama diferenciacija.

2.1. Mechaninė vedinio reikšmė.

Panagrinėkime tiesinį kurio nors standaus kūno ar materialaus taško judėjimą.

Leiskite tam tikru momentu judantis taškas
buvo per atstumą nuo pradinės padėties
.

Po tam tikro laiko
ji pasitraukė per atstumą
. Požiūris =- vidutinis greitis materialus taškas
. Atsižvelgdami į tai, suraskime šio santykio ribą
.

Vadinasi, momentinio materialaus taško judėjimo greičio nustatymas sumažinamas iki kelio išvestinės laiko atžvilgiu radimo.

2.2. Išvestinės geometrinė reikšmė

Turėkime grafiškai apibrėžtą funkciją
.

Ryžiai. 1. Geometrinė išvestinės reikšmė

Jeigu
, tada tašką
, judės išilgai kreivės, artėdamas prie taško
.

Vadinasi
, t.y. išvestinės reikšmė tam tikrai argumento reikšmei skaitine prasme lygus kampo, kurį sudaro liestinė tam tikrame taške su teigiama ašies kryptimi, tangentei
.

2.3. Pagrindinių diferenciacijos formulių lentelė.

Maitinimo funkcija

Eksponentinė funkcija

Logaritminė funkcija

Trigonometrinė funkcija

Atvirkščiai trigonometrinė funkcija

2.4. Diferencijavimo taisyklės.

Darinys iš

Funkcijų sumos (skirtumo) išvestinė


Dviejų funkcijų sandaugos išvestinė


Dviejų funkcijų dalinio išvestinė


2.5. Sudėtingos funkcijos išvestinė.

Tegu funkcija duota
tokia, kad ją būtų galima pavaizduoti formoje

Ir
, kur kintamasis tai yra tarpinis argumentas

Sudėtinės funkcijos išvestinė yra lygi duotosios funkcijos išvestinės tarpinio argumento ir tarpinio argumento išvestinei x atžvilgiu.

1 pavyzdys.

2 pavyzdys.

3. Diferencialinė funkcija.

Tebūnie
, skiriasi tam tikru intervalu
ir tegul adresu ši funkcija turi išvestinę

,

tada galėsime rašyti

(1),

Kur - be galo mažas kiekis,

nuo kada

Padauginus visus lygybės (1) narius iš
mes turime:

Kur
- b.m.v. aukštesnė tvarka.

Didumas
vadinamas funkcijos diferencialu
ir yra paskirtas

.

3.1. Diferencialo geometrinė vertė.

Tegu funkcija duota
.

2 pav. Geometrinė diferencialo reikšmė.

.

Akivaizdu, kad funkcijos skirtumas
yra lygus liestinės ordinatės prieaugiui tam tikrame taške.

3.2. Įvairių eilių dariniai ir diferencialai.

Jei yra
, Tada
vadinamas pirmuoju dariniu.

Pirmojo vedinio vedinys vadinamas antros eilės išvestiniu ir rašomas
.

Funkcijos n-osios eilės išvestinė
vadinama (n-1) eilės išvestine ir rašoma:

.

Funkcijos diferencialo diferencialas vadinamas antruoju diferencialu arba antros eilės diferencialu.

.

.

3.3 Biologinių problemų sprendimas naudojant diferenciaciją.

1 užduotis. Tyrimai parodė, kad mikroorganizmų kolonijos augimas paklūsta įstatymui
, Kur N – mikroorganizmų skaičius (tūkst.), t – laikas (dienos).

b) Ar šiuo laikotarpiu kolonijos populiacija padidės ar mažės?

Atsakymas. Kolonijos dydis padidės.

2 užduotis. Ežero vanduo periodiškai tiriamas, siekiant stebėti patogeninių bakterijų kiekį. Per t dienų po tyrimo bakterijų koncentracija nustatoma pagal santykį

.

Kada ežere bus minimali bakterijų koncentracija ir ar bus galima jame maudytis?

Sprendimas: Funkcija pasiekia max arba min, kai jos išvestinė lygi nuliui.

,

Nustatykime, kad maksimalus arba min. bus po 6 dienų. Norėdami tai padaryti, paimkime antrąją išvestinę.


Atsakymas: Po 6 dienų bus minimali bakterijų koncentracija.

Kas yra logaritmas?

Dėmesio!
Yra papildomų
Specialiajame 555 skyriuje nurodytos medžiagos.
Tiems, kurie labai „nelabai...“
Ir tiems, kurie „labai…“)

Kas yra logaritmas? Kaip išspręsti logaritmus? Šie klausimai glumina daugelį abiturientų. Tradiciškai logaritmų tema laikoma sudėtinga, nesuprantama ir bauginančia. Ypač lygtys su logaritmais.

Tai visiškai netiesa. absoliučiai! Netikite manimi? gerai. Dabar vos per 10–20 minučių jūs:

1. Suprasite kas yra logaritmas.

2. Išmokite spręsti visą klasę eksponentinės lygtys. Net jei nieko apie juos negirdėjote.

3. Išmokite skaičiuoti paprastus logaritmus.

Be to, tam jums tereikia žinoti daugybos lentelę ir kaip skaičių pakelti į laipsnį...

Jaučiu, kad tau kyla abejonių... Na, gerai, pažymėk laiką! einam!

Pirmiausia savo galvoje išspręskite šią lygtį:

Jei jums patinka ši svetainė...

Beje, turiu jums dar keletą įdomių svetainių.)

Galite praktikuotis spręsdami pavyzdžius ir sužinoti savo lygį. Testavimas su momentiniu patvirtinimu. Mokykimės – su susidomėjimu!)

Galite susipažinti su funkcijomis ir išvestinėmis.

Instrukcijos

Parašykite pateiktą logaritminę išraišką. Jei išraiška naudoja 10 logaritmą, tada jo žymėjimas sutrumpinamas ir atrodo taip: lg b yra dešimtainis logaritmas. Jei logaritmo pagrindas yra skaičius e, tada parašykite išraišką: ln b – natūralusis logaritmas. Suprantama, kad bet kurio rezultatas yra laipsnis, iki kurio turi būti padidintas bazinis skaičius, norint gauti skaičių b.

Surandant dviejų funkcijų sumą, tereikia jas atskirti po vieną ir sudėti rezultatus: (u+v)" = u"+v";

Surandant dviejų funkcijų sandaugos išvestinę, reikia padauginti pirmosios funkcijos išvestinę iš antrosios ir pridėti antrosios funkcijos išvestinę, padaugintą iš pirmosios funkcijos: (u*v)" = u"*v +v"*u;

Norint rasti dviejų funkcijų dalinio išvestinę, reikia iš dividendo, padauginto iš daliklio funkcijos, sandaugos atimti daliklio išvestinės sandaugą, padaugintą iš dividendo funkcijos, ir padalyti visa tai daliklio funkcija kvadratu. (u/v)" = (u"*v-v"*u)/v^2;

Jei duota sudėtinga funkcija, tada reikia padauginti vidinės funkcijos išvestinę ir išorinės išvestinę. Tegul y=u(v(x)), tada y"(x)=y"(u)*v"(x).

Naudodamiesi aukščiau gautais rezultatais, galite atskirti beveik bet kurią funkciją. Taigi pažvelkime į keletą pavyzdžių:

y=x^4, y"=4*x^(4-1)=4*x^3;

y=2*x^3*(e^x-x^2+6), y"=2*(3*x^2*(e^x-x^2+6)+x^3*(e^x-2 *x));
Taip pat kyla problemų apskaičiuojant išvestinę priemonę taške. Tegu funkcija y=e^(x^2+6x+5) duota, reikia rasti funkcijos reikšmę taške x=1.
1) Raskite funkcijos išvestinę: y"=e^(x^2-6x+5)*(2*x +6).

2) Apskaičiuokite funkcijos reikšmę in duotas taškas y"(1)=8*e^0=8

Video tema

Naudingi patarimai

Išmok elementariųjų išvestinių lentelę. Tai žymiai sutaupys laiko.

Šaltiniai:

  • konstantos išvestinė

Taigi, koks skirtumas tarp racionalioji lygtis nuo racionalaus? Jei nežinomas kintamasis yra po ženklu kvadratinė šaknis, tada lygtis laikoma neracionalia.

Instrukcijos

Pagrindinis tokių lygčių sprendimo būdas yra abiejų pusių konstravimo metodas lygtysį aikštę. Tačiau. tai natūralu, pirmas dalykas, kurį reikia padaryti, yra atsikratyti ženklo. Šis metodas nėra techniškai sudėtingas, tačiau kartais jis gali sukelti problemų. Pavyzdžiui, lygtis yra v(2x-5)=v(4x-7). Padalinus abi puses kvadratu, gaunama 2x-5=4x-7. Išspręsti tokią lygtį nėra sunku; x=1. Bet numeris 1 nebus suteiktas lygtys. Kodėl? Vietoj x reikšmės lygtyje pakeiskite vieną, o dešinėje ir kairėje pusėje bus išraiškos, kurios neturi prasmės. Ši vertė negalioja kvadratinei šakniai. Todėl 1 yra pašalinė šaknis, todėl ši lygtis neturi šaknų.

Taigi, neracionali lygtis išspręsta naudojant abiejų jos pusių kvadratūros metodą. Ir išsprendus lygtį, reikia nupjauti pašalines šaknis. Norėdami tai padaryti, pakeiskite rastas šaknis į pradinę lygtį.

Apsvarstykite kitą.
2х+vх-3=0
Žinoma, šią lygtį galima išspręsti naudojant tą pačią lygtį kaip ir ankstesnė. Perkelti junginius lygtys, kurie neturi kvadratinės šaknies, į dešinę pusę ir tada naudokite kvadrato metodą. išspręskite gautą racionaliąją lygtį ir šaknis. Bet ir kitas, elegantiškesnis. Įveskite naują kintamąjį; vх=y. Atitinkamai gausite 2y2+y-3=0 formos lygtį. Tai yra, įprasta kvadratinė lygtis. Raskite jo šaknis; y1=1 ir y2=-3/2. Tada išspręskite du lygtys vх=1; vх=-3/2. Antroji lygtis neturi šaknų iš pirmosios, kad x=1. Nepamirškite patikrinti šaknų.

Išspręsti tapatybes yra gana paprasta. Tam reikia atlikti identiškas transformacijas, kol bus pasiektas užsibrėžtas tikslas. Taigi, naudojant paprastas aritmetines operacijas, užduotis bus išspręsta.

Jums reikės

  • - popierius;
  • - rašiklis.

Instrukcijos

Paprasčiausias iš tokių transformacijų yra algebrinės sutrumpintos daugybos (pavyzdžiui, sumos kvadratas (skirtumas), kvadratų skirtumas, suma (skirtumas), sumos kubas (skirtumas)). Be to, yra daug ir trigonometrines formules, kurios iš esmės yra tos pačios tapatybės.

Iš tiesų, dviejų dėmenų sumos kvadratas lygus kvadratui pirmasis plius dvigubas pirmojo sandauga su antruoju ir plius antrojo kvadratas, tai yra (a+b)^2= (a+b)(a+b)=a^2+ab +ba+b ^2=a^2+2ab +b^2.

Supaprastinkite abu

Bendrieji sprendimo principai

Pakartokite matematinės analizės vadovėlį arba aukštoji matematika, kuris yra apibrėžtas integralas. Kaip žinoma, apibrėžtojo integralo sprendimas yra funkcija, kurios išvestinė duos integrandą. Ši funkcija vadinama antiderivatine. Remiantis šiuo principu, konstruojami pagrindiniai integralai.
Pagal integrando tipą nustatykite, kuris iš lentelės integralų tinka šiuo atveju. Ne visada tai įmanoma iš karto nustatyti. Dažnai lentelės forma tampa pastebima tik po kelių transformacijų, siekiant supaprastinti integrandą.

Kintamojo pakeitimo metodas

Jei integrandas yra trigonometrinė funkcija, kurios argumentas yra polinomas, pabandykite naudoti kintamųjų keitimo metodą. Norėdami tai padaryti, pakeiskite daugianarį integrando argumente nauju kintamuoju. Remdamiesi ryšiu tarp naujų ir senų kintamųjų, nustatykite naujas integracijos ribas. Išskirdami šią išraišką, raskite naują skirtumą . Taigi jūs gausite nauja išvaizda ankstesnio integralo, artimas ar net atitinkantis bet kurią lentelę.

Antrosios rūšies integralų sprendimas

Jei integralas yra antrosios rūšies integralas, vektorinė integralo forma, tuomet turėsite naudoti perėjimo nuo šių integralų prie skaliarinių taisyklių. Viena iš tokių taisyklių yra Ostrogradskio ir Gauso santykis. Šis dėsnis leidžia pereiti nuo tam tikros vektoriaus funkcijos rotoriaus srauto prie trigubo integralo per tam tikro vektoriaus lauko divergenciją.

Integracijos ribų pakeitimas

Radus antidarinį, būtina pakeisti integracijos ribas. Pirma, viršutinės ribos reikšmę pakeiskite antidarinio išraiška. Jūs gausite tam tikrą skaičių. Tada iš gauto skaičiaus atimkite kitą skaičių, gautą iš apatinės ribos, į antidarinį. Jei viena iš integracijos ribų yra begalybė, tai pakeičiant ją į antiderivatinė funkcija reikia eiti iki ribos ir rasti tai, ko išsireiškimas siekia.
Jei integralas yra dvimatis arba trimatis, tada integralo ribas turėsite pavaizduoti geometriškai, kad suprastumėte, kaip įvertinti integralą. Iš tiesų, tarkime, trimačio integralo atveju, integravimo ribos gali būti ištisos plokštumos, ribojančios integruojamą tūrį.

Logaritmus, kaip ir bet kokius skaičius, galima visais būdais sudėti, atimti ir transformuoti. Bet kadangi logaritmai nėra visiškai įprasti skaičiai, čia yra taisyklės, kurios vadinamos pagrindinės savybės.

Jūs tikrai turite žinoti šias taisykles – be jų nepavyks išspręsti nė vienos rimtos logaritminės problemos. Be to, jų labai mažai – viską gali išmokti per vieną dieną. Taigi pradėkime.

Logaritmų pridėjimas ir atėmimas

Apsvarstykite du logaritmus su tais pačiais pagrindais: log a x ir žurnalas a y. Tada juos galima pridėti ir atimti, ir:

  1. žurnalas a x+ žurnalas a y= žurnalas a (x · y);
  2. žurnalas a x− žurnalas a y= žurnalas a (x : y).

Taigi logaritmų suma lygi sandaugos logaritmui, o skirtumas lygus koeficiento logaritmui. Atkreipkite dėmesį: pagrindinis dalykas čia yra identiškais pagrindais. Jei priežastys skiriasi, šios taisyklės neveikia!

Šios formulės padės apskaičiuoti logaritminę išraišką net tada, kai neatsižvelgiama į atskiras jos dalis (žr. pamoką „Kas yra logaritmas“). Pažvelkite į pavyzdžius ir pamatykite:

Rąstas 6 4 + rąstas 6 9.

Kadangi logaritmai turi tas pačias bazes, naudojame sumos formulę:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Užduotis. Raskite išraiškos reikšmę: log 2 48 − log 2 3.

Pagrindai yra vienodi, mes naudojame skirtumo formulę:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Užduotis. Raskite išraiškos reikšmę: log 3 135 − log 3 5.

Vėlgi bazės yra tos pačios, todėl turime:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Kaip matote, pradinės išraiškos yra sudarytos iš „blogų“ logaritmų, kurie nėra skaičiuojami atskirai. Bet po transformacijų gaunami visiškai normalūs skaičiai. Daugelis testų yra pagrįsti šiuo faktu. Taip, vieningo valstybinio egzamino metu į testus panašūs posakiai siūlomi labai rimtai (kartais praktiškai be pakeitimų).

Rodiklio išskyrimas iš logaritmo

Dabar šiek tiek apsunkinkime užduotį. Ką daryti, jei logaritmo pagrindas arba argumentas yra laipsnis? Tada šio laipsnio rodiklis gali būti paimtas iš logaritmo ženklo pagal šias taisykles:

Nesunku pastebėti, kad paskutinė taisyklė seka pirmąsias dvi. Bet vis tiek geriau tai atsiminti - kai kuriais atvejais tai žymiai sumažins skaičiavimų skaičių.

Žinoma, visos šios taisyklės turi prasmę, jei laikomasi logaritmo ODZ: a > 0, a ≠ 1, x> 0. Ir dar vienas dalykas: išmokite taikyti visas formules ne tik iš kairės į dešinę, bet ir atvirkščiai, t.y. Skaičius prieš logaritmo ženklą galite įvesti į patį logaritmą. Tai yra tai, ko dažniausiai reikia.

Užduotis. Raskite išraiškos reikšmę: log 7 49 6 .

Atsikratykime argumento laipsnio naudodami pirmąją formulę:
log 7 49 6 = 6 log 7 49 = 6 2 = 12

Užduotis. Raskite posakio prasmę:

[Paveikslo antraštė]

Atkreipkite dėmesį, kad vardiklyje yra logaritmas, kurio pagrindas ir argumentas yra tikslieji laipsniai: 16 = 2 4 ; 49 = 7 2. Turime:

[Paveikslo antraštė]

Manau, kad paskutinis pavyzdys reikalauja šiek tiek paaiškinimo. Kur dingo logaritmai? Iki pat paskutinės akimirkos dirbame tik su vardikliu. Pateikėme ten stovinčio logaritmo bazę ir argumentą galių pavidalu ir išėmėme eksponentus - gavome „trijų aukštų“ trupmeną.

Dabar pažvelkime į pagrindinę dalį. Skaitiklyje ir vardiklyje yra tas pats skaičius: log 2 7. Kadangi log 2 7 ≠ 0, tai trupmeną galime sumažinti – vardiklyje liks 2/4. Pagal aritmetikos taisykles keturis galima perkelti į skaitiklį, kas buvo padaryta. Rezultatas buvo atsakymas: 2.

Perėjimas prie naujo pagrindo

Kalbėdamas apie logaritmų sudėjimo ir atėmimo taisykles, konkrečiai pabrėžiau, kad jos veikia tik su tais pačiais pagrindais. O jei priežastys kitokios? O jei jie nėra tikslūs to paties skaičiaus laipsniai?

Į pagalbą ateina perėjimo prie naujo pagrindo formulės. Suformuluokime juos teoremos forma:

Tegu pateikiamas logaritmo žurnalas a x. Tada už bet kokį skaičių c toks kad c> 0 ir c≠ 1, lygybė yra teisinga:

[Paveikslo antraštė]

Visų pirma, jei įdėtume c = x, gauname:

[Paveikslo antraštė]

Iš antrosios formulės išplaukia, kad logaritmo bazę ir argumentą galima sukeisti vietomis, tačiau tokiu atveju „apverčiama“ visa išraiška, t.y. vardiklyje atsiranda logaritmas.

Šios formulės retai randamos įprastose skaitinėse išraiškose. Įvertinti, kiek jos patogios, galima tik sprendžiant logaritmines lygtis ir nelygybes.

Tačiau yra problemų, kurių niekaip nepavyks išspręsti, išskyrus persikėlimą į naują fondą. Pažvelkime į porą iš šių:

Užduotis. Raskite išraiškos reikšmę: log 5 16 log 2 25.

Atkreipkite dėmesį, kad abiejų logaritmų argumentuose yra tikslios galios. Išimkime rodiklius: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2 log 2 5;

Dabar „apverskime“ antrąjį logaritmą:

[Paveikslo antraštė]

Kadangi sandauga nesikeičia keičiant veiksnius, ramiai padauginome keturis ir du, o tada nagrinėjome logaritmus.

Užduotis. Raskite išraiškos reikšmę: log 9 100 lg 3.

Pirmojo logaritmo pagrindas ir argumentas yra tikslios galios. Užsirašykime tai ir atsikratykime rodiklių:

[Paveikslo antraštė]

Dabar atsikratykime dešimtainio logaritmo, pereidami prie naujos bazės:

[Paveikslo antraštė]

Pagrindinė logaritminė tapatybė

Dažnai sprendimo procese skaičių reikia pateikti kaip logaritmą tam tikram pagrindui. Šiuo atveju mums padės šios formulės:

Pirmuoju atveju skaičius n tampa argumentu stovinčio laipsnio rodikliu. Skaičius n gali būti visiškai bet kas, nes tai tik logaritmo reikšmė.

Antroji formulė iš tikrųjų yra perfrazuotas apibrėžimas. Taip ji vadinama: pagrindinė logaritminė tapatybė.

Tiesą sakant, kas atsitiks, jei numeris b pakelti iki tokios galios, kad skaičius bšiai galiai suteikia skaičių a? Teisingai: jūs gaunate tą patį numerį a. Dar kartą atidžiai perskaitykite šią pastraipą – daugeliui žmonių ji užstringa.

Kaip ir formulės, skirtos pereiti prie naujos bazės, pagrindinė logaritminė tapatybė kartais yra vienintelis galimas sprendimas.

Užduotis. Raskite posakio prasmę:

[Paveikslo antraštė]

Atkreipkite dėmesį, kad log 25 64 = log 5 8 – tiesiog paėmė kvadratą iš logaritmo pagrindo ir argumento. Atsižvelgdami į galių dauginimo iš tos pačios bazės taisykles, gauname:

[Paveikslo antraštė]

Jei kas nežino, tai buvo tikra užduotis iš unifikuoto valstybinio egzamino :)

Logaritminis vienetas ir logaritminis nulis

Baigdamas pateiksiu dvi tapatybes, kurias vargu ar galima pavadinti savybėmis – veikiau tai yra logaritmo apibrėžimo pasekmės. Jie nuolat atsiranda problemų ir, stebėtinai, sukelia problemų net „pažengusiems“ studentams.

  1. žurnalas a a= 1 yra logaritminis vienetas. Prisiminkite kartą ir visiems laikams: logaritmas bet kokiam pagrindui a nuo šio pagrindo yra lygus vienetui.
  2. žurnalas a 1 = 0 yra logaritminis nulis. Bazė a gali būti bet koks, bet jei argumente yra vienas, logaritmas lygus nuliui! Nes a 0 = 1 yra tiesioginė apibrėžimo pasekmė.

Tai visos savybės. Būtinai praktikuokite juos pritaikydami praktiškai! Pamokos pradžioje atsisiųskite cheat lapą, atsispausdinkite ir išspręskite problemas.