Das Lösen physikalischer Probleme oder Beispiele in der Mathematik ist ohne Kenntnis der Ableitung und der Methoden zu ihrer Berechnung völlig unmöglich. Die Ableitung ist eines der wichtigsten Konzepte in der mathematischen Analyse. Wir haben beschlossen, den heutigen Artikel diesem grundlegenden Thema zu widmen. Was ist eine Ableitung, was ist ihre physikalische und geometrische Bedeutung, wie berechnet man die Ableitung einer Funktion? Alle diese Fragen lassen sich zu einer einzigen zusammenfassen: Wie ist die Ableitung zu verstehen?

Geometrische und physikalische Bedeutung der Ableitung

Lass es eine Funktion geben f(x) , angegeben in einem bestimmten Intervall (a, b) . Zu diesem Intervall gehören die Punkte x und x0. Wenn sich x ändert, ändert sich auch die Funktion selbst. Das Argument ändern - der Unterschied in seinen Werten x-x0 . Dieser Unterschied wird geschrieben als Delta x und heißt Argumentinkrement. Eine Änderung oder Erhöhung einer Funktion ist die Differenz zwischen den Werten einer Funktion an zwei Punkten. Definition von Derivat:

Die Ableitung einer Funktion an einem Punkt ist die Grenze des Verhältnisses des Inkrements der Funktion an einem bestimmten Punkt zum Inkrement des Arguments, wenn dieses gegen Null tendiert.

Ansonsten kann man es so schreiben:

Welchen Sinn hat es, eine solche Grenze zu finden? Und hier ist, was es ist:

Die Ableitung einer Funktion an einem Punkt ist gleich der Tangente des Winkels zwischen der OX-Achse und der Tangente an den Graphen der Funktion an einem bestimmten Punkt.


Physikalische Bedeutung Derivat: Die Ableitung des Weges nach der Zeit ist gleich der Geschwindigkeit der geradlinigen Bewegung.

Tatsächlich weiß seit der Schulzeit jeder, dass Geschwindigkeit ein besonderer Weg ist x=f(t) und Zeit T . Durchschnittsgeschwindigkeit für einen bestimmten Zeitraum:

Um die Bewegungsgeschwindigkeit zu einem bestimmten Zeitpunkt herauszufinden t0 Sie müssen das Limit berechnen:

Regel eins: Legen Sie eine Konstante fest

Die Konstante kann aus dem Ableitungszeichen entnommen werden. Darüber hinaus muss dies getan werden. Gehen Sie beim Lösen von Beispielen in der Mathematik als Regel vor: Wenn Sie einen Ausdruck vereinfachen können, müssen Sie ihn unbedingt vereinfachen .

Beispiel. Berechnen wir die Ableitung:

Regel zwei: Ableitung der Summe der Funktionen

Die Ableitung der Summe zweier Funktionen ist gleich der Summe der Ableitungen dieser Funktionen. Dasselbe gilt für die Ableitung der Funktionsdifferenz.

Wir werden diesen Satz nicht beweisen, sondern ein praktisches Beispiel betrachten.

Finden Sie die Ableitung der Funktion:

Regel drei: Ableitung des Funktionsprodukts

Die Ableitung des Produkts zweier differenzierbarer Funktionen wird nach folgender Formel berechnet:

Beispiel: Finden Sie die Ableitung einer Funktion:

Lösung:

Es ist wichtig, hier über die Berechnung von Ableitungen komplexer Funktionen zu sprechen. Derivat komplexe Funktion ist gleich dem Produkt der Ableitung dieser Funktion nach dem Zwischenargument und der Ableitung des Zwischenarguments nach der unabhängigen Variablen.

Im obigen Beispiel stoßen wir auf den Ausdruck:

In diesem Fall ist das Zwischenargument 8x hoch fünf. Um die Ableitung eines solchen Ausdrucks zu berechnen, berechnen wir zunächst die Ableitung der externen Funktion nach dem Zwischenargument und multiplizieren dann mit der Ableitung des Zwischenarguments selbst nach der unabhängigen Variablen.

Regel vier: Ableitung des Quotienten zweier Funktionen

Formel zur Bestimmung der Ableitung des Quotienten zweier Funktionen:

Wir haben versucht, von Grund auf über Derivate für Dummies zu sprechen. Dieses Thema ist nicht so einfach, wie es scheint. Seien Sie also gewarnt: In den Beispielen stecken oft Fallstricke. Seien Sie also vorsichtig bei der Berechnung von Ableitungen.

Bei Fragen zu diesem und anderen Themen können Sie sich an den Studierendenservice wenden. Wir helfen Ihnen in kurzer Zeit, den schwierigsten Test zu lösen und die Aufgaben zu verstehen, auch wenn Sie noch nie zuvor Ableitungsrechnungen durchgeführt haben.

In dieser Lektion lernen wir, Formeln und Differenzierungsregeln anzuwenden.

Beispiele. Finden Sie Ableitungen von Funktionen.

1. y=x 7 +x 5 -x 4 +x 3 -x 2 +x-9. Anwenden der Regel ICH, Formeln 4, 2 und 1. Wir bekommen:

y’=7x 6 +5x 4 -4x 3 +3x 2 -2x+1.

2. y=3x 6 -2x+5. Wir lösen auf ähnliche Weise und verwenden dieselben Formeln und Formeln 3.

y’=3∙6x 5 -2=18x 5 -2.

Anwenden der Regel ICH, Formeln 3, 5 Und 6 Und 1.

Anwenden der Regel IV, Formeln 5 Und 1 .

Im fünften Beispiel gemäß der Regel ICH Die Ableitung der Summe ist gleich der Summe der Ableitungen, und wir haben gerade die Ableitung des ersten Termes gefunden (Beispiel 4 ), daher werden wir Derivate finden 2 Und 3 Begriffe und für den 1 Summand können wir das Ergebnis sofort schreiben.

Lassen Sie uns differenzieren 2 Und 3 Begriffe gemäß der Formel 4 . Dazu transformieren wir die Wurzeln der dritten und vierten Potenz im Nenner in Potenzen von c negative Indikatoren, und dann, von 4 Formel finden wir Ableitungen von Potenzen.

Schauen Sie sich dieses Beispiel und das Ergebnis an. Haben Sie das Muster erkannt? Bußgeld. Das bedeutet, dass wir eine neue Formel haben und diese zu unserer Ableitungstabelle hinzufügen können.

Lösen wir das sechste Beispiel und leiten wir eine weitere Formel ab.

Nutzen wir die Regel IV und Formel 4 . Lassen Sie uns die resultierenden Brüche reduzieren.

Schauen wir uns diese Funktion und ihre Ableitung an. Sie verstehen natürlich das Muster und sind bereit, die Formel zu benennen:

Neue Formeln lernen!

Beispiele.

1. Finden Sie das Inkrement des Arguments und das Inkrement der Funktion y= x 2, Wenn Anfangswert Das Argument war gleich 4 , und neu - 4,01 .

Lösung.

Neuer Argumentwert x=x 0 +Δx. Ersetzen wir die Daten: 4,01=4+Δx, daher die Erhöhung des Arguments Δх=4,01-4=0,01. Das Inkrement einer Funktion ist per Definition gleich der Differenz zwischen dem neuen und dem vorherigen Wert der Funktion, d.h. Δy=f (x 0 +Δx) - f (x 0). Da wir eine Funktion haben y=x2, Das Δу=(x 0 +Δx) 2 - (x 0) 2 =(x 0) 2 +2x 0 · Δx+(Δx) 2 - (x 0) 2 =2x 0 · Δx+(Δx) 2 =

2 · 4 · 0,01+(0,01) 2 =0,08+0,0001=0,0801.

Antwort: Argumentinkrement Δх=0,01; Funktionsinkrement Δу=0,0801.

Das Funktionsinkrement könnte anders gefunden werden: Δy=y (x 0 +Δx) -y (x 0)=y(4,01) -y(4)=4,01 2 -4 2 =16,0801-16=0,0801.

2. Finden Sie den Neigungswinkel der Tangente an den Funktionsgraphen y=f(x) an der Stelle x 0, Wenn f "(x 0) = 1.

Lösung.

Der Wert der Ableitung am Tangentialpunkt x 0 und ist der Wert des Tangens des Tangentenwinkels (die geometrische Bedeutung der Ableitung). Wir haben: f "(x 0) = tanα = 1 → α = 45°, Weil tg45°=1.

Antwort: Die Tangente an den Graphen dieser Funktion bildet einen Winkel mit der positiven Richtung der Ox-Achse gleich 45°.

3. Leiten Sie die Formel für die Ableitung der Funktion her y=xn.

Differenzierung ist die Aktion, die Ableitung einer Funktion zu finden.

Verwenden Sie beim Finden von Ableitungen Formeln, die auf der Grundlage der Definition einer Ableitung abgeleitet wurden, genauso wie wir die Formel für den Ableitungsgrad abgeleitet haben: (x n)" = nx n-1.

Das sind die Formeln.

Tabelle der Derivate Das Auswendiglernen wird durch das Aussprechen mündlicher Formulierungen erleichtert:

1. Derivat konstanter Wert gleich Null.

2. X prim ist gleich eins.

3. Der konstante Faktor kann aus dem Vorzeichen der Ableitung entnommen werden.

4. Die Ableitung eines Grades ist gleich dem Produkt des Exponenten dieses Grades mit einem Grad mit derselben Basis, aber der Exponent ist um eins kleiner.

5. Die Ableitung einer Wurzel ist gleich eins dividiert durch zwei gleiche Wurzeln.

6. Die Ableitung von eins dividiert durch x ist gleich minus eins dividiert durch x im Quadrat.

7. Die Ableitung des Sinus ist gleich dem Kosinus.

8. Die Ableitung des Kosinus ist gleich minus Sinus.

9. Die Ableitung des Tangens ist gleich eins dividiert durch das Quadrat des Kosinus.

10. Die Ableitung des Kotangens ist gleich minus eins geteilt durch das Quadrat des Sinus.

Wir unterrichten Differenzierungsregeln.

1. Die Ableitung einer algebraischen Summe ist gleich der algebraischen Summe der Ableitungen der Terme.

2. Die Ableitung eines Produkts ist gleich dem Produkt der Ableitung des ersten Faktors und des zweiten Faktors plus dem Produkt des ersten Faktors und der Ableitung des zweiten.

3. Die Ableitung von „y“ geteilt durch „ve“ ist gleich einem Bruch, bei dem der Zähler „y prim multipliziert mit „ve“ minus „y multipliziert mit ve prim“ ist und der Nenner „ve quadriert“ ist.

4. Sonderfall Formeln 3.

Lasst uns gemeinsam lernen!

Seite 1 von 1 1

Dabei untersuchten wir die einfachsten Ableitungen und machten uns auch mit den Differenzierungsregeln und einigen technischen Techniken zum Auffinden von Ableitungen vertraut. Wenn Sie also nicht sehr gut mit Ableitungen von Funktionen umgehen können oder einige Punkte in diesem Artikel nicht ganz klar sind, lesen Sie zunächst die obige Lektion. Bitte kommen Sie in eine ernste Stimmung – der Stoff ist nicht einfach, aber ich werde trotzdem versuchen, ihn einfach und klar darzustellen.

In der Praxis muss man sich sehr oft, ich würde sogar sagen, fast immer mit der Ableitung einer komplexen Funktion befassen, wenn man Aufgaben bekommt, Ableitungen zu finden.

Wir schauen uns die Tabelle zur Regel (Nr. 5) zur Differenzierung einer komplexen Funktion an:

Lass es uns herausfinden. Achten wir zunächst auf den Eintrag. Hier haben wir zwei Funktionen – und, und die Funktion ist, bildlich gesprochen, in der Funktion verschachtelt. Eine Funktion dieses Typs (wenn eine Funktion in einer anderen verschachtelt ist) wird als komplexe Funktion bezeichnet.

Ich werde die Funktion aufrufen externe Funktion, und die Funktion – interne (oder verschachtelte) Funktion.

! Diese Definitionen sind nicht theoretisch und sollten nicht in der endgültigen Gestaltung der Aufgaben enthalten sein. Ich verwende die informellen Ausdrücke „externe Funktion“, „interne“ Funktion nur, um Ihnen das Verständnis des Materials zu erleichtern.

Um die Situation zu klären, bedenken Sie Folgendes:

Beispiel 1

Finden Sie die Ableitung einer Funktion

Unter dem Sinus haben wir nicht nur den Buchstaben „X“, sondern einen ganzen Ausdruck, daher wird es nicht funktionieren, die Ableitung direkt aus der Tabelle zu finden. Wir bemerken auch, dass es hier unmöglich ist, die ersten vier Regeln anzuwenden, es scheint einen Unterschied zu geben, aber Tatsache ist, dass der Sinus nicht „in Stücke gerissen“ werden kann:

In diesem Beispiel wird aus meinen Erläuterungen bereits intuitiv klar, dass eine Funktion eine komplexe Funktion ist und das Polynom eine interne Funktion (Einbettung) und eine externe Funktion ist.

Erster Schritt Was Sie tun müssen, um die Ableitung einer komplexen Funktion zu finden, ist: verstehen, welche Funktion intern und welche extern ist.

Falls einfache Beispiele Es scheint klar, dass unter dem Sinus ein Polynom eingebettet ist. Was aber, wenn nicht alles offensichtlich ist? Wie lässt sich genau bestimmen, welche Funktion extern und welche intern ist? Um dies zu erreichen, schlage ich die Verwendung der folgenden Technik vor, die im Kopf oder im Entwurf durchgeführt werden kann.

Stellen wir uns vor, wir müssen den Wert des Ausdrucks at auf einem Taschenrechner berechnen (anstelle von eins kann es eine beliebige Zahl geben).

Was berechnen wir zuerst? Erstens muss getan werden nächste Aktion: , daher ist das Polynom eine interne Funktion:

Zweitens muss gefunden werden, also wird Sinus eine externe Funktion sein:

Nachdem wir AUSVERKAUFT Bei internen und externen Funktionen ist es an der Zeit, die Regel der Differenzierung komplexer Funktionen anzuwenden .

Beginnen wir mit der Entscheidung. Aus der Lektion Wie findet man die Ableitung? Wir erinnern uns, dass der Entwurf einer Lösung für jede Ableitung immer so beginnt: Wir schließen den Ausdruck in Klammern und setzen oben rechts einen Strich:

Anfangs Wir finden die Ableitung der externen Funktion (Sinus), schauen uns die Tabelle der Ableitungen der Elementarfunktionen an und stellen fest, dass . Alle Tabellenformeln sind auch anwendbar, wenn „x“ durch einen komplexen Ausdruck ersetzt wird, in diesem Fall:

Bitte beachten Sie die innere Funktion hat sich nicht verändert, wir rühren es nicht an.

Nun, das ist ganz offensichtlich

Das Ergebnis der Anwendung der Formel in seiner endgültigen Form sieht es so aus:

Der konstante Faktor steht üblicherweise am Anfang des Ausdrucks:

Sollte es zu Missverständnissen kommen, schreiben Sie die Lösung auf Papier und lesen Sie die Erläuterungen noch einmal.

Beispiel 2

Finden Sie die Ableitung einer Funktion

Beispiel 3

Finden Sie die Ableitung einer Funktion

Wie immer schreiben wir auf:

Lassen Sie uns herausfinden, wo wir eine externe und wo eine interne Funktion haben. Dazu versuchen wir (gedanklich oder im Entwurf), den Wert des Ausdrucks bei zu berechnen. Was sollten Sie zuerst tun? Zunächst müssen Sie berechnen, was die Basis ist: Daher ist das Polynom die interne Funktion:

Und erst dann wird die Potenzierung durchgeführt, daher ist die Potenzfunktion eine externe Funktion:

Nach der Formel , müssen Sie zunächst die Ableitung der externen Funktion ermitteln, in diesem Fall den Grad. Wir suchen die benötigte Formel in der Tabelle: . Wir wiederholen noch einmal: Jede Tabellenformel gilt nicht nur für „X“, sondern auch für einen komplexen Ausdruck. Somit ist das Ergebnis der Anwendung der Regel zur Differenzierung einer komplexen Funktion nächste:

Ich betone noch einmal, dass sich unsere innere Funktion nicht ändert, wenn wir die Ableitung der äußeren Funktion bilden:

Jetzt müssen Sie nur noch eine sehr einfache Ableitung der internen Funktion finden und das Ergebnis ein wenig optimieren:

Beispiel 4

Finden Sie die Ableitung einer Funktion

Dies ist ein Beispiel dafür unabhängige Entscheidung(Antwort am Ende der Lektion).

Um Ihr Verständnis der Ableitung einer komplexen Funktion zu festigen, gebe ich ein Beispiel ohne Kommentare, versuche es selbst herauszufinden, überlege, wo die äußere und wo die innere Funktion ist, warum werden die Aufgaben auf diese Weise gelöst?

Beispiel 5

a) Finden Sie die Ableitung der Funktion

b) Finden Sie die Ableitung der Funktion

Beispiel 6

Finden Sie die Ableitung einer Funktion

Hier haben wir eine Wurzel, und um die Wurzel zu differenzieren, muss sie als Kraft dargestellt werden. Daher bringen wir die Funktion zunächst in die für die Differenzierung geeignete Form:

Bei der Analyse der Funktion kommen wir zu dem Schluss, dass die Summe der drei Terme eine interne Funktion und die Potenzierung eine externe Funktion ist. Wir wenden die Differenzierungsregel komplexer Funktionen an :

Wir stellen den Grad wieder als Wurzel (Wurzel) dar und wenden für die Ableitung der inneren Funktion eine einfache Regel zur Differenzierung der Summe an:

Bereit. Sie können den Ausdruck auch in Klammern angeben gemeinsamer Nenner und schreibe alles als einen Bruch auf. Es ist natürlich schön, aber wenn Sie umständliche lange Ableitungen erhalten, ist es besser, dies nicht zu tun (es ist leicht, verwirrt zu werden, einen unnötigen Fehler zu machen, und es wird für den Lehrer unpraktisch sein, dies zu überprüfen).

Beispiel 7

Finden Sie die Ableitung einer Funktion

Dies ist ein Beispiel, das Sie selbst lösen können (Antwort am Ende der Lektion).

Es ist interessant festzustellen, dass man manchmal anstelle der Regel zum Differenzieren einer komplexen Funktion die Regel zum Differenzieren eines Quotienten verwenden kann , aber eine solche Lösung wird wie eine ungewöhnliche Perversion aussehen. Hier typisches Beispiel:

Beispiel 8

Finden Sie die Ableitung einer Funktion

Hier können Sie die Differenzierungsregel des Quotienten verwenden , aber es ist viel profitabler, die Ableitung durch die Differenzierungsregel einer komplexen Funktion zu finden:

Wir bereiten die Funktion für die Differentiation vor – wir verschieben das Minus aus dem Ableitungszeichen und erhöhen den Kosinus in den Zähler:

Der Kosinus ist eine interne Funktion, die Potenzierung eine externe Funktion.
Nutzen wir unsere Regel :

Wir finden die Ableitung der internen Funktion und setzen den Kosinus wieder nach unten:

Bereit. Im betrachteten Beispiel ist es wichtig, sich nicht in den Zeichen zu verwirren. Versuchen Sie es übrigens mit der Regel zu lösen , die Antworten müssen übereinstimmen.

Beispiel 9

Finden Sie die Ableitung einer Funktion

Dies ist ein Beispiel, das Sie selbst lösen können (Antwort am Ende der Lektion).

Bisher haben wir uns Fälle angesehen, in denen wir nur eine Verschachtelung in einer komplexen Funktion hatten. Bei praktischen Aufgaben findet man oft Derivate, bei denen wie bei Nistpuppen 3 oder sogar 4-5 Funktionen gleichzeitig ineinander verschachtelt sind.

Beispiel 10

Finden Sie die Ableitung einer Funktion

Lassen Sie uns die Anhänge dieser Funktion verstehen. Versuchen wir, den Ausdruck anhand des experimentellen Werts zu berechnen. Wie würden wir mit einem Taschenrechner rechnen?

Zuerst müssen Sie finden, was bedeutet, dass der Arkussinus die tiefste Einbettung ist:

Dieser Arkussinus von Eins sollte dann quadriert werden:

Und schließlich potenzieren wir sieben:

Das heißt, in diesem Beispiel haben wir drei verschiedene Funktionen und zwei Einbettungen, wobei die innerste Funktion der Arkussinus und die äußerste Funktion die Exponentialfunktion ist.

Beginnen wir mit der Entscheidung

Gemäß der Regel Zuerst müssen Sie die Ableitung der äußeren Funktion bilden. Wir schauen uns die Ableitungstabelle an und finden die Ableitung der Exponentialfunktion: Der einzige Unterschied besteht darin, dass wir anstelle von „x“ haben komplexer Ausdruck, was die Gültigkeit dieser Formel nicht negiert. Also das Ergebnis der Anwendung der Regel zur Differenzierung einer komplexen Funktion nächste.

Definition. Die Funktion \(y = f(x)\) sei in einem bestimmten Intervall definiert, das den Punkt \(x_0\) darin enthält. Geben wir dem Argument ein Inkrement \(\Delta x \), sodass es dieses Intervall nicht verlässt. Finden wir das entsprechende Inkrement der Funktion \(\Delta y \) (beim Übergang vom Punkt \(x_0 \) zum Punkt \(x_0 + \Delta x \)) und stellen wir die Beziehung \(\frac(\Delta y)(\Updelta x) \). Gibt es eine Grenze für dieses Verhältnis bei \(\Delta x \rightarrow 0\), dann wird die angegebene Grenze aufgerufen Ableitung einer Funktion\(y=f(x) \) am Punkt \(x_0 \) und bezeichnen \(f"(x_0) \).

$$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) = f"(x_0) $$

Das Symbol y wird häufig zur Bezeichnung der Ableitung verwendet. Beachten Sie, dass y" = f(x) eine neue Funktion ist, die jedoch natürlich mit der Funktion y = f(x) zusammenhängt und an allen Punkten x definiert ist, an denen die obige Grenze existiert. Diese Funktion wird wie folgt aufgerufen: Ableitung der Funktion y = f(x).

Geometrische Bedeutung der Ableitung ist wie folgt. Wenn es möglich ist, an dem Punkt mit der Abszisse x=a, der nicht parallel zur y-Achse ist, eine Tangente an den Graphen der Funktion y = f(x) zu zeichnen, dann drückt f(a) die Steigung der Tangente aus :
\(k = f"(a)\)

Da \(k = tg(a) \), dann ist die Gleichheit \(f"(a) = tan(a) \) wahr.

Lassen Sie uns nun die Definition der Ableitung unter dem Gesichtspunkt ungefährer Gleichheiten interpretieren. Die Funktion \(y = f(x)\) habe an einem bestimmten Punkt \(x\) eine Ableitung:
$$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) = f"(x) $$
Dies bedeutet, dass in der Nähe des Punktes x die ungefähre Gleichheit \(\frac(\Delta y)(\Delta Delta x\). Die sinnvolle Bedeutung der resultierenden ungefähren Gleichheit ist wie folgt: Das Inkrement der Funktion ist „nahezu proportional“ zum Inkrement des Arguments, und der Proportionalitätskoeffizient ist der Wert der Ableitung in angegebenen Punkt X. Beispielsweise gilt für die Funktion \(y = x^2\) die Näherungsgleichung \(\Delta y \ approx 2x \cdot \Delta x \). Wenn wir die Definition einer Ableitung sorgfältig analysieren, werden wir feststellen, dass sie einen Algorithmus zu ihrer Ermittlung enthält.

Formulieren wir es.

Wie finde ich die Ableitung der Funktion y = f(x)?

1. Fixieren Sie den Wert von \(x\), finden Sie \(f(x)\)
2. Geben Sie dem Argument \(x\) ein Inkrement \(\Delta x\), gehen Sie zu einem neuen Punkt \(x+ \Delta x \), finden Sie \(f(x+ \Delta x) \)
3. Finden Sie das Inkrement der Funktion: \(\Delta y = f(x + \Delta x) - f(x) \)
4. Erstellen Sie die Beziehung \(\frac(\Delta y)(\Delta x) \)
5. Berechnen Sie $$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) $$
Dieser Grenzwert ist die Ableitung der Funktion am Punkt x.

Wenn eine Funktion y = f(x) eine Ableitung in einem Punkt x hat, dann heißt sie in einem Punkt x differenzierbar. Das Verfahren zum Finden der Ableitung der Funktion y = f(x) wird aufgerufen Differenzierung Funktionen y = f(x).

Lassen Sie uns die folgende Frage diskutieren: Wie hängen Stetigkeit und Differenzierbarkeit einer Funktion an einem Punkt miteinander zusammen?

Die Funktion y = f(x) sei im Punkt x differenzierbar. Dann kann am Punkt M(x; f(x)) eine Tangente an den Graphen der Funktion gezogen werden, und, erinnern Sie sich, der Winkelkoeffizient der Tangente ist gleich f "(x). Ein solcher Graph kann nicht „brechen“ am Punkt M, d. h. die Funktion muss am Punkt x stetig sein.

Es handelte sich um „praktische“ Argumente. Lassen Sie uns eine strengere Begründung liefern. Wenn die Funktion y = f(x) im Punkt x differenzierbar ist, dann gilt die Näherungsgleichung \(\Delta y \ approx f"(x) \cdot \Delta x\). Wenn in dieser Gleichheit \(\Delta x \) gegen Null tendiert, dann tendiert \(\Delta y \) gegen Null, und dies ist die Bedingung für die Kontinuität der Funktion an einem Punkt.

Also, Wenn eine Funktion an einem Punkt x differenzierbar ist, dann ist sie an diesem Punkt stetig.

Die umgekehrte Aussage ist nicht wahr. Beispiel: Funktion y = |x| ist überall stetig, insbesondere im Punkt x = 0, aber die Tangente an den Graphen der Funktion am „Verbindungspunkt“ (0; 0) existiert nicht. Wenn an einem Punkt keine Tangente an den Graphen einer Funktion gezogen werden kann, existiert die Ableitung an diesem Punkt nicht.

Ein weiteres Beispiel. Die Funktion \(y=\sqrt(x)\) ist auf der gesamten Zahlengerade stetig, auch am Punkt x = 0. Und die Tangente an den Graphen der Funktion existiert an jedem Punkt, auch am Punkt x = 0 Da aber die Tangente in diesem Punkt mit der y-Achse zusammenfällt, also senkrecht zur Abszissenachse steht, hat ihre Gleichung die Form x = 0. Steigungskoeffizient eine solche Zeile gibt es nicht, was bedeutet, dass \(f"(0) \) auch nicht existiert

So haben wir eine neue Eigenschaft einer Funktion kennengelernt – die Differenzierbarkeit. Wie kann man aus dem Graphen einer Funktion schließen, dass diese differenzierbar ist?

Die Antwort ist eigentlich oben gegeben. Wenn es irgendwann möglich ist, eine Tangente an den Graphen einer Funktion zu zeichnen, die nicht senkrecht zur Abszissenachse steht, dann ist die Funktion an diesem Punkt differenzierbar. Wenn irgendwann die Tangente an den Graphen einer Funktion nicht existiert oder senkrecht zur Abszissenachse steht, dann ist die Funktion an diesem Punkt nicht differenzierbar.

Differenzierungsregeln

Die Operation zum Finden der Ableitung wird aufgerufen Differenzierung. Bei dieser Operation müssen Sie häufig mit Quotienten, Summen, Produkten von Funktionen sowie „Funktionen von Funktionen“, also komplexen Funktionen, arbeiten. Basierend auf der Definition der Ableitung können wir Differenzierungsregeln ableiten, die diese Arbeit erleichtern. Wenn C eine konstante Zahl ist und f=f(x), g=g(x) differenzierbare Funktionen sind, dann gilt Folgendes Differenzierungsregeln:

$$ C"=0 $$ $$ x"=1 $$ $$ (f+g)"=f"+g" $$ $$ (fg)"=f"g + fg" $$ $$ ( Cf)"=Cf" $$ $$ \left(\frac(f)(g) \right) " = \frac(f"g-fg")(g^2) $$ $$ \left(\frac (C)(g) \right) " = -\frac(Cg")(g^2) $$ Ableitung einer komplexen Funktion:
$$ f"_x(g(x)) = f"_g \cdot g"_x $$

Tabelle der Ableitungen einiger Funktionen

$$ \left(\frac(1)(x) \right) " = -\frac(1)(x^2) $$ $$ (\sqrt(x)) " = \frac(1)(2\ sqrt(x)) $$ $$ \left(x^a \right) " = a x^(a-1) $$ $$ \left(a^x \right) " = a^x \cdot \ln a $$ $$ \left(e^x \right) " = e^x $$ $$ (\ln x)" = \frac(1)(x) $$ $$ (\log_a x)" = \frac (1)(x\ln a) $$ $$ (\sin x)" = \cos x $$ $$ (\cos x)" = -\sin x $$ $$ (\text(tg) x) " = \frac(1)(\cos^2 x) $$ $$ (\text(ctg) x)" = -\frac(1)(\sin^2 x) $$ $$ (\arcsin x) " = \frac(1)(\sqrt(1-x^2)) $$ $$ (\arccos x)" = \frac(-1)(\sqrt(1-x^2)) $$ $$ (\text(arctg) x)" = \frac(1)(1+x^2) $$ $$ (\text(arcctg) x)" = \frac(-1)(1+x^2) $ $