Резьбу на стержнях изображают по наружному диаметру сплошными основными линиями, а по внутреннему - сплошными тонкими.

Основные элементы метрической резьбы (наружный и внутренний диаметры, шаг резьбы, длину и угол резьбы) вы изучали в пятом классе. На рисунке указаны некоторые эти элементы, но на чертежах таких надписей не делают.

Резьбу в отверстиях изображают сплошными основными линиями по внутреннему диаметру резьбы и сплошными тонкими по наружному.

Условное обозначение резьбы показано на рисунке. Читать надо так: резьба метрическая (М) с наружным диаметром 20 мм, третьего класса точности, правая, с крупным шагом - «Резьба М20 кл. 3».

На рисунке обозначение резьбы «М25Х1,5 кл. 3 левая» следует читать так: резьба метрическая, наружный диаметр резьбы 25 мм, шаг 1,5 мм, мелкая, третьего класса точности, левая.

Вопросы

  1. Какими линиями изображают резьбу на стержне?
  2. Какими линиями показывают резьбу в отверстии?
  3. Как обозначают резьбу на чертежах?
  4. Прочитайте записи «М10Х1 кл. 3» и «М14Х1,5 кл. 3 левая».

Рабочий чертеж

Каждое изделие - машина или механизм - состоит из отдельных, соединенных между собой, деталей.

Детали обычно изготовляют литьем, ковкой, штамповкой. В большинстве случаев такие детали подвергают механической обработке на металлорежущих станках - токарных, сверлильных, фрезерных и других.

Чертежи деталей, снабженные всеми указаниями для изготовления и контроля, называют рабочими чертежами.

На рабочих чертежах указывают форму и размеры детали, материал, из которого ее надо изготовить. На чертежах проставляют чистоту обработки поверхностей, требования к точности изготовления - допуски. Способы изготовления и технические требования к готовой детали указывают надписью на чертеже.

Чистота обработки поверхности. На обработанных поверхностях всегда остаются следы обработки, неровности. Эти неровности, или, как говорят, шероховатость поверхности, зависят от инструмента, которым обрабатывают.

Например, поверхность, обработанная драчёвым , будет более шероховатой (неровной), чем после обработки личным напильником. Характер шероховатости зависит также от свойств материала изделия, от скорости резания и величины подачи при обработке на металлорежущих станках.

Для оценки качества обработки установлено 14 классов чистоты поверхностей. Классы обозначают на чертежах одним равносторонним треугольником (∆), рядом с которым проставляют номер класса (например, ∆ 5).

Способы получения поверхностей разной чистоты и их обозначения на чертежах. Чистота обработки одной детали бывает не везде одинаковая; поэтому на чертеже указывают, где и какая требуется обработка.

Знак со вверху чертежа указывает, что для грубых поверхностей требований к чистоте обработки не предъявляют. Знак ∆ 3 в правом верхнем углу чертежа, взятый в скобки, ставят, если к обработке поверхности детали предъявляют одинаковые требования. Это поверхность со следами обработки драчёвыми напильниками, обдирочными резцами, абразивным кругом.

Знаки ∆ 4 - ∆ 6 - получистая поверхность, с малозаметными следами обработки чистовым резцом, личным напильником, шлифовальным кругом, мелкой шкуркой.

Знаки ∆ 7 - ∆ 9 - чистая поверхность, без видимых следов обработки. Такой обработки достигают шлифованием, опиливанием бархатным напильником, шабрением.

Знак ∆ 10 - очень чистая поверхность, достигнутая тонким шлифованием, доводкой на оселках, опиливанием бархатным напильником с маслом и мелом.

Знаки ∆ 11 - ∆ 14 - классы чистоты поверхности, достигают специальными обработками.

Способы изготовления и технические требования к готовой детали на чертежах указывают надписью (например, притупить острые кромки, закалить, воронить, сверлить отверстие вместе с другой деталью и другие требования к изделию).

Вопросы

  1. Какими значками обозначают чистоту обработки поверхности?
  2. После какого вида обработки можно получить чистоту поверхности ∆ 6?

Задание

Прочитайте чертеж на рисунке и ответьте письменно на вопросы по предлагаемой форме.

Вопросы для чтения чертежа Ответы
1. Как называется деталь?
2. Где ее применяют?
3. Перечислите технические требования к детали
4. Как называется вид чертежа?
5. Какие условности имеются на чертеже?
6. Какова общая форма и габарит детали?
7. Какая резьба нарезана на стержне?
8. Укажите элементы и размеры детали


«Слесарное дело», И.Г.Спиридонов,
Г.П.Буфетов, В.Г.Копелевич

Деталь — это часть машины, изготовленная из одного куска материала (например, болт, гайка, шестерня, ходовой винт токарного станка). Узел — это соединение двух или нескольких деталей. Изделие собирают по сборочным чертежам. Чертеж такого изделия, в которое входит несколько узлов, называют сборочным, он состоит из чертежей каждой детали или узла и изображает сборочную единицу (чертеж единого…

Размеры зенковок проставляют так, как показано на рис. 63, 64.

Если отверстия в детали расположены на осях ее симметрии, то угловые размеры проставлять не следует. Прочие же отверстия следует координировать угловым размером. При этом для отверстий, располагаемых по окружности на равных расстояниях, задается диаметр центровой окружности и задается надпись о количестве отверстий (рис. 65, 66).

На чертежах литых деталей, требующих механической обработки, указывают размеры так, чтобы только один размер оказался проставленным между необработанной поверхностью – литейной базой и обработанной – основной размерной базой (рис. 67). На рис. 67 и 68 для сравнения приводятся примеры простановки размеров на чертеже литой детали и аналогичной детали, изготовляемой путем механической обработки.

Размеры отверстий на чертежах допускается наносить упрощенно (по ГОСТ 2.318-81) (табл. 2.4) в следующих случаях:

диаметр отверстий на изображении – 2 мм и менее;

отсутствует изображение отверстий в разрезе (сечении) вдоль оси;

нанесение отверстий по общим правилам усложняет чтение чертежа.

Таблица 7

Упрощенное нанесение размеров на различные типы отверстий.

Тип отверстия

d1 x l1 –l4 x

d1 x l1

d1 x l1 –l4 x

d1 /d2 x l3

Продолжение табл. 7

Тип отверстия

Пример упрощенного нанесения размеров отверстий

d1 /d2 x φ

Z x p x l2 – l1

Z x p x l2 – l1 – l4 x

Размеры отверстий следует указывать на полке линии-выноски, проведенной от оси отверстия (рис. 69).

2.3.2. Изображение, обозначение и нанесение размеров некоторых элементов деталей

Наиболее распространены следующие элементы: фаски, галтели, проточки (канавки), пазы и т.д.

Фаски – конические или плоские узкие срезы (притупления) острых кромок деталей – применяют для облегчения процесса сборки, предохранения рук от порезов острыми кромками (требования техники

безопасности), придания изделиям более красивого вида (требования технической эстетики) и в других случаях.

Размеры фасок и правила их указания на чертежах стандартизированы. Согласно ГОСТ 2.307-68*, размеры фасок под углом 45о наносят так, как показано на рис. 70.

Рис. 70 Размеры фасок под другими углами (обычно 15, 30 и 60о ) указывают по

общим правилам: проставляют линейные и угловые размеры (рис. 71, а ) или два линейных размера (рис. 71, б ).

Размер высоты фаски с выбирают согласно ГОСТ 10948-64 (табл. 8). Таблица 8

Нормальные размеры фасок (ГОСТ 10948-64)

Высота фаски с

П р и м е ч а н и е. Для неподвижных посадок следует принимать фаски: на конце вала 30о , в отверстии втулки 45о .

Галтели – скругления внешних и внутренних углов на деталях машин – широко применяют для облегчения изготовления деталей литьем, штамповкой, ковкой, повышения прочностных свойств валов, осей и других деталей в местах перехода от одного диаметра к другому. На рис. 74 буквой А отмечено место концентрации напряжений, могущей вызвать трещину или излом детали. Применение галтели устраняет эту опасность.

Рис. 74 Размеры галтелей берут из того же ряда чисел, что и для величины с

Радиусы скруглений, размеры которых в масштабе чертежа 1 мм и меньше, не изображают и размеры их наносят, как показано на рис. 74.

Для получения резьбы полного профиля на всей длине стержня или отверстия делают проточку в конце резьбы для выхода инструмента. Проточки бывают двух исполнений. На чертеже детали проточку изображают упрощенно, а чертеж дополняют выносным элементом в увеличенном масштабе (рис. 49, 51). Форму и размеры проточек, размеры сбега и недореза устанавливает ГОСТ 10549-80 в зависимости от шага резьбы p.

На рис. 75 приведен пример проточки для наружной метрической резьбы , а на рис. 76 – для внутренней метрической резьбы.

Рис. 76 Размеры проточки выбирают из таблиц ГОСТ 10549-80 (см. прил. 5), их

Ниже приведены размеры проточек для наружной метрической резьбы:

Кромки шлифовального круга всегда немного скруглены, поэтому в том месте детали, где нежелательно наличие отступа от кромок, делают канавку для выхода шлифовального круга.

Такую канавку на чертеже детали изображают упрощенно, а чертеж дополняют выносным элементом (рис. 77, 78).

Размеры канавок в зависимости от диаметра поверхности устанавливает ГОСТ 8820-69 (приложение 4).

Размеры канавок для выхода шлифовального круга можно рассчитать по

формулам (все размеры в мм):

а) при d = 10÷50 мм

d1 = d –0,5,

d2 = d + 0,5,

R1 = 0,5;

б) при d = 50 100 мм

d1 = d – 1,

d2 = d + 1,

R1 = 0,5.

2.3.3. Шероховатость поверхностей детали

В зависимости от способа изготовления детали (рис. 79), ее поверхности могут иметь различную шероховатость (табл. 9, 10).

Рис. 79 Шероховатость поверхности – это совокупность микронеровностей

обработанной поверхности, рассматриваемых на участке стандартизированной длины (L).Эту длину называют базовой, она выбирается в зависимости от характера измеряемой поверхности. Чем больше высота микронеровностей, тем большей берется базовая длина.

Для определения шероховатости поверхности ГОСТ 2789-73 предусматривает шесть параметров.

Высотные: Ra – среднее арифметическое отклонение профиля; Rz – высота неровностей профиля по десяти точкам; Rmax – наибольшая высота профиля.

Шаговые: S – средний шаг местных выступов профиля; Sm – средний шаг неровностей; Ttp – относительная опорная длина, где p – значение уровня сечения профиля.

Наиболее распространенными в технической документации являются параметры Ra (среднее арифметическое отклонение профиля) и Rz (высота неровностей профиля по десяти точкам).

Зная форму профиля поверхности, определяемую профилографом на ее базовой длине L, можно построить диаграмму шероховатости (рис. 80),

    Здесь это много обсуждалось. Повторюсь в общем смысле зачем нужно показывать линии перехода условно: 1. Чтобы чертёж был читаемым. 2. От линий перехода, показанных условно можно ставить размеры, которые часто больше ни на каком виде и разрезе не проставить. Вот пример. Есть разница? 1. Как сейчас можно отобразить во всех перечисленных CAD-системах. А вот как нужно отобразить. Линии перехода показаны условно и показаны размеры, которые при других режимах отображения линий перехода просто не проставить. Почему этого требовал нормоконтролёр? Да просто чтобы чертежи имели привычный вид после многих лет работы в 2D и хорошо читались, особенно заказчиком, который их согласовывает.

    Это верно:) это бред:) в ТФ можно и так и так =) ощутимой разницы в скорости не будет, можно даже потом взять любую копию перекрасить, поменять отверстия, удалить отверстия, что угодно... и массив все-равно останется массивом - можно менять будет количество копий, направление и тп, видео пилить или так поверите? :) Это верно, а какая задача? Перевести как SW сплайны по точкам в сплайн по полюсам что ли, если подумать это также некоторое изменение исходной геометрии - к этому нет замечаний?:) как я понимаю, ТФ только 1 к 1 и переводит, остальное уже можно настроить в шаблоне ТФ до экспорта в DWG - см. рис под спойлером, либо отмасштабировать в виде AC, что в принципе не противоречит основным методам работы с AutoCAD, а так как в виду распространенности АС на ранних стадиях пика популярности внедрения САПР, то возрастному поколению это привычнее даже: А если еще докапаться к возможностям экспорта/импорта разных САПР: 1) то как из 2D-чертежа SW экспортировать только выделенные линии в DWG? (из 3D документов более менее SW приспособлен, только все-равно придется в маленьком окне предпросмотра чистить лишнее вручную). Заранее удалить все что не нужно, а после этого экспортировать-> как-то не современно, не по-молодежному:) 2) И наоборот как выделенные линии в AutoCAD быстро импортировать в SW(например для эскиза, или же просто как набор линий для чертежа)?(для ТФ: выделил набор нужных линий в AC -ctrl+c и далее в TF просто ctrl+v - всё)

    О какой детали речь, а то может эту деталь не зеркалить надо, а просто привязать иначе и будет как раз как надо. Зеркальная деталь это таже конфигурация только созданная машиной, можно сделать конфигурацию детали самостоятельно и это в некоторых случаях может оказаться изящнее, так же проще редактироваться в последствии.

    Здесь это много обсуждалось. Повторюсь в общем смысле зачем нужно показывать линии перехода условно: 1. Чтобы чертёж был читаемым. 2. От линий перехода, показанных условно можно ставить размеры, которые часто больше ни на каком виде и разрезе не проставить. Вот пример. Есть разница? 1. Как сейчас можно отобразить во всех перечисленных CAD-системах. А вот как нужно отобразить. Линии перехода показаны условно и показаны размеры, которые при других режимах отображения линий перехода просто не проставить. Почему этого требовал нормоконтролёр? Да просто чтобы чертежи имели привычный вид после многих лет работы в 2D и хорошо читались, особенно заказчиком, который их согласовывает.

    Это верно:) это бред:) в ТФ можно и так и так =) ощутимой разницы в скорости не будет, можно даже потом взять любую копию перекрасить, поменять отверстия, удалить отверстия, что угодно... и массив все-равно останется массивом - можно менять будет количество копий, направление и тп, видео пилить или так поверите? :) Это верно, а какая задача? Перевести как SW сплайны по точкам в сплайн по полюсам что ли, если подумать это также некоторое изменение исходной геометрии - к этому нет замечаний?:) как я понимаю, ТФ только 1 к 1 и переводит, остальное уже можно настроить в шаблоне ТФ до экспорта в DWG - см. рис под спойлером, либо отмасштабировать в виде AC, что в принципе не противоречит основным методам работы с AutoCAD, а так как в виду распространенности АС на ранних стадиях пика популярности внедрения САПР, то возрастному поколению это привычнее даже: А если еще докапаться к возможностям экспорта/импорта разных САПР: 1) то как из 2D-чертежа SW экспортировать только выделенные линии в DWG? (из 3D документов более менее SW приспособлен, только все-равно придется в маленьком окне предпросмотра чистить лишнее вручную). Заранее удалить все что не нужно, а после этого экспортировать-> как-то не современно, не по-молодежному:) 2) И наоборот как выделенные линии в AutoCAD быстро импортировать в SW(например для эскиза, или же просто как набор линий для чертежа)?(для ТФ: выделил набор нужных линий в AC -ctrl+c и далее в TF просто ctrl+v - всё)

    О какой детали речь, а то может эту деталь не зеркалить надо, а просто привязать иначе и будет как раз как надо. Зеркальная деталь это таже конфигурация только созданная машиной, можно сделать конфигурацию детали самостоятельно и это в некоторых случаях может оказаться изящнее, так же проще редактироваться в последствии.

Глухое резьбовое отверстие выполняется в следующем порядке: сначала высверливается отверстие диаметра d1 под резьбу, затем выполняется заходная фаска S x45º (рис. 8,а ) и, наконец, нарезается внутренняя резьба d (рис. 8,б ). Дно отверстия под резьбу имеет коническую форму, а угол при вершине конуса φ зависит от заточки сверла. При проектировании принимается φ = 120º (номинальный угол заточки сверл). Вполне очевидно, что глубина резьбы должна быть больше длины ввинчиваемого резьбового конца крепежной детали. Между окончанием резьбы и дном отверстия тоже остается некоторое расстояние а , называемое «недорез».

Из рис. 9 становится ясен подход к назначению размеров глухих резьбовых отверстий: глубина резьбы h определяется как разница стяжной длины L резьбовой детали и суммарной толщины H притягиваемых деталей (может быть одна, а может быть их и несколько), плюс небольшой запас резьбы k , обычно принимаемый равным 2-3 шагам Р резьбы

h = L - H + k ,

где k = (2…3) Р.

Рис. 8. Последовательность выполнения глухих резьбовых отверстий

Рис. 9. Крепление винтом в сборе

Стяжная длина L крепежной детали указывается в ее условном обозначении. Например: «Болт М6 х 20.46 ГОСТ 7798-70» - его стяжная длина L = 20 мм. Суммарная толщина притягиваемых деталей H высчитывается из чертежа общего вида (в эту сумму следует добавить и толщину шайбы, подложенной под головку крепежного изделия). Шаг резьбы Р также указывается в условном обозначении крепежной детали. Например: «Винт М12 х 1,25 х 40.58 ГОСТ 11738-72» - его резьба имеет мелкий шаг Р = 1,25 мм. Если шаг не указывается, то по умолчанию он основной (крупный). Катет заходной фаски S обычно принимают равным шагу резьбы Р . Глубина N отверстия под резьбу больше значения h на размер недореза а :

N = h + a.

Некоторое отличие расчета размеров резьбового отверстия под шпильку состоит в том, что ввинчиваемый резьбовой конец шпильки не зависит от ее стяжной длины и толщин притягиваемых деталей. Для представленных в задании шпилек ГОСТ 22032-76 ввинчиваемый «шпилечный» конец равен диаметру резьбы d , поэтому

h = d + k.

Полученные размеры следует округлить до ближайшего большего целого числа.

Окончательное изображение глухого резьбового отверстия с необходимыми размерами приведено на рис. 10. Диаметр отверстия под резьбу и угол заточки сверла на чертеже не указывают.

Рис. 10. Изображение глухого резьбового отверстия на чертеже

В таблицах справочника приведены значения всех расчетных величин (диаметры отверстий под резьбу, недорезы, толщины шайб и пр.).

Необходимое замечание: применение короткого недореза должно быть обосновано. Например, если деталь в месте расположения в ней резьбового отверстия недостаточно толстая, а сквозное отверстие под резьбу может нарушить герметичность гидравлической или пневматической системы, то конструктору приходится «ужиматься», в т.ч. укорачивая недорез.