Поверхностное натяжение , стремление вещества (жидкости или твердой фазы) уменьшить избыток своей потенциальной энергии на границе раздела с др. фазой (поверхностную энергию). Определяется как работа, затрачиваемая на создание единицы площади поверхности раздела фаз (размерность Дж/м 2). Согласно другому определению, поверхностное натяжение - сила, отнесенная к единице длины контура, ограничивающего поверхность раздела фаз (размерность Н/м); эта сила действует тангенциально к поверхности и препятствует ее самопроизвольному увеличению.

Поверхностное натяжение - основная термодинамическая характеристика поверхностного слоя жидкости на границе с газовой фазой или другой жидкостью. Поверхностное натяжение различных жидкостей на границе с собственным паром изменяется в широких пределах: от единиц для сжиженных низкокипящих газов до нескольких тысяч мН/м для расплавленных тугоплавких веществ. Поверхностное натяжение зависит от температуры. Для многих однокомпонентных неассоциированных жидкостей (вода, расплавы солей, жидкие металлы) вдали от критической температуры хорошо выполняется линейная зависимость:

где s и s 0 - поверхностное натяжение при температурах T и T 0 соответственно, α≈0,1 мН/(м·К) - температурный коэффициент поверхностного натяжения . Основной способ регулирования поверхностного натяжения заключается в использовании поверхностно-активных веществ (ПАВ).

Поверхностное натяжение входит во многие уравнения физики, физической и коллоидной химии , электрохимии .

Оно определяет следующие величины:

1. капиллярное давление , где r 1 и r 2 - главные радиусы кривизны поверхности, и давление насыщенного пара р r над искривленной поверхностью жидкости: , где r - радиус кривизны поверхности, R - газовая постоянная, V n - молярный объем жидкости, p 0 - давление над плоской поверхностью (законы Лапласа и Кельвина, см. Капиллярные явления).

2. Краевой угол смачивания θ в контакте жидкости с поверхностью твердого тела: cos , где - удельная свободная поверхностные энергии твердого тела на границе с газом и жидкостью, - поверхностное натяжение жидкости (закон Юнга, см. Смачивание).

3. Адсорбцию ПАВ где μ - химический потенциал адсорбируемого вещества (уравнение Гиббса, см. Адсорбция). Для разбавленных растворов где с - молярная концентрация ПАВ.

4. Состояние адсорбционного слоя ПАВ на поверхности жидкости: (p s + a/A 2 )·(A - b )=kT , где p s =(s 0 —s) - двухмерное давление, s 0 и s - соответственно поверхностное натяжение чистой жидкости и той же жидкости при наличии адсорбционного слоя, а - постоянная (аналог постоянной Ван-дер-Ваальса), A - площадь поверхностного слоя, приходящаяся на одну адсорбированную молекулу, b - площадь, занимаемая 1 молекулой жидкости, k - постоянная Больцмана (уравнение Фрумкина-Фольмера, см. Поверхностная активность).


5. Электрокапиллярный эффект: - d s/d f = r s , где r s - плотность поверхностного заряда, f-потенциал электрода (уравнение Липмана, см. Электрокапиллярные явления).

6. Работу образования критического зародыша новой фазы W c . Например, при гомогенной конденсации пара при давлении , где p 0 - давление пара над плоской поверхностью жидкости (уравнение Гиббса, см. Зарождение новой фазы).

7. Длину l капиллярных волн на поверхности жидкости: , где ρ - плотность жидкости, τ - период колебаний, g - ускорение свободного падения.

8. Упругость жидких пленок со слоем ПАВ: модуль упругости , где s - площадь пленки (уравнение Гиббса, см. Тонкие пленки).

Поверхностное натяжение измерено для многих чистых веществ и смесей (растворов, расплавов) в широком интервале температур и составов. Поскольку поверхностное натяжение весьма чувствительно к наличию примесей, измерения разными методиками не всегда дают совпадающие значения.

Основные методы измерения следующие:

1. подъем смачивающих жидкостей в капиллярах. Высота подъема , где - разность плотностей жидкости и вытесняемого газа, ρ - радиус капилляра. Точность определения поверхностного натяжения растет с уменьшением отношения ρ/α (α -капиллярная постоянная жидкости).

2. Измерение максимального давления в газовом пузырьке (метод Ребиндера); расчет основан на уравнении Лапласа. При выдавливании пузырька в жидкость через калиброванный капилляр радиусом r перед моментом отрыва давление p m =2σ/r

3. Метод взвешивания капель (сталагмометрия): (уравнение Тейта), где G - общий вес n капель, оторвавшихся под действием силы тяжести от среза капиллярной трубки радиусом r . Для повышения точности правую часть умножают на поправочный коэфициент, зависящий от r и объема капли.

4. Метод уравновешивания пластины (метод Вильгельми). При погружении пластины с периметром сечения L в смачивающую жидкость вес пластины , где G 0 - вес сухой пластины.

5. Метод отрыва кольца (метод Дю Нуи). Для отрыва проволочного кольца радиусом R от поверхности жидкости требуется сила

6. Метод сидящей капли. Профиль капли на несмачиваемой подложке определяется из условия постоянства суммы гидростатического и капиллярного давлений. Дифференциальное уравнение профиля капли решается численным интегрированием (метод Башфорта-Адамса). По измерениям геометрических параметров профиля капли с помощью соответствующих таблиц находят поверхностное натяжение .

7. Метод вращающейся капли. Капля жидкости плотностью r 1 помещается в трубку с более тяжелой (плотность r 2) жидкостью. При вращении трубки с угловой скоростью ω капля вытягивается вдоль оси, принимая приближенно форму цилиндра радиуса r . Расчетное уравнение: . Метод применяют для измерения малых поверхностных натяжений на границе двух жидкостей.

Поверхностное натяжение является определяющим фактором многих технологических процессов: флотации, пропитки пористых материалов, нанесения покрытий, моющего действия, порошковой металлургии, пайки и др. Велика роль поверхностного натяжения в процессах, происходящих в невесомости.

Понятие поверхностного натяжения впервые ввел Я. Сегнер (1752). В первой половине XIX в. на основе представления о поверхностном натяжении была развита математическая теория капиллярных явлений (П. Лаплас, С. Пуассон, К. Гаусс, А.Ю. Давидов). Во второй половине XIX в. Дж.Гиббс развил термодинамическую теорию поверхностных явлений, в которой решающую роль играет поверхностное натяжение . В XX в. разрабатываются методы регулирования поверхностного натяжения с помощью ПАВ и электрокапиллярных эффектов (И. Ленгмюр, П.А. Ребиндер, A.H. Фрумкнн). Среди современных актуальных проблем - развитие молекулярной теории поверхностного натяжения различных жидкостей (включая расплавленные металлы), влияние кривизны поверхности на поверхностное натяжение.

Муниципальное образовательное учреждение

«Средняя общеобразовательная школа № 24 с углубленным изучением предметов художественно-эстетического направления»

Школьная научно-практическая конференция

Реферат на тему: «Роль сил поверхностного натяжения в физике»

Выполнил:

Онохин Дмитрий Алексеевич, ученик 10 «А» класса,МОУ «СОШ № 24 с углубленным изучением предметов художественно-эстетического направления».

Научный руководитель:

Вольхин Николай Иванович,учитель физики,МОУ «СОШ № 24 с углубленным изучением предметов художественно-эстетического направления».

г. Архангельск, 2009


Введение

Метод пузырька

Метод проволочной

Метод капли

Опыт «Пробирка»

Опыт «Плато»

Роль поверхностного натяжения в жизни

Заключение

Библиография

Приложения


Введение.

Такие силы, как тяготение, упругость и трение, бросаются в глаза; мы ощущаем их непосредственно каждый день. Но в окружающем нас мире повседневных явлений действует еще одна сила, на которую мы обычно не обращаем никакого внимания. Сила эта сравнительно невелика, ее действия никогда не вызывают мощных эффектов. Она даже в последнее время исключена из программ приемных экзаменов для поступающих в вузы. Тем не менее мы не можем налить воды в стакан, вообще ничего не можем проделать с какой-либо жидкостью без того, чтобы не привести в действие силы, о которых у нас сейчас пойдет речь. Это силы поверхностного натяжения.

Сила поверхностного натяжения – это сила, обусловленная взаимным притяжением молекул жидкости, направленная по касательной к ее поверхности.

Действие сил поверхностного натяжения приводит к тому, что жидкость в равновесии имеет минимально возможную площадь поверхности. При контакте жидкости с другими телами жидкость имеет поверхность, соответствующую минимуму ее поверхностной энергии.

Понятие «поверхностное натяжение» впервые ввел Я. Сегнер (1752 год).

К вызываемым поверхностным натяжением эффектам мы настолько привыкли, что не замечаем их, если не развлекаемся пусканием мыльных пузырей. Однако в природе и нашей жизни они играют немалую роль.

Существует достаточно много различных методов определения поверхностного натяжения: метод капель, метод проволочной рамки, метод кольца, метод капиллярных волн, метод капли и пузырька и др. Метод проволочной рамки и метод кольца применяются для грубых измерений поверхностного натяжения.

1. Метод пузырька.

«Выдуйте мыльный пузырь и смотрите на него: вы можете заниматься всю жизнь его изучением, не переставая извлекать из него уроки физики», – писал великий английский физик лорд Кельвин.

В частности, мыльная пленка является прекрасным объектом для изучения поверхностного натяжения. Сила тяжести здесь практически роли не играет, так как мыльные пленки чрезвычайно тонки и их масса совершенно ничтожна. Поэтому основную роль играют силы поверхностного натяжения, благодаря которым форма пленки всегда оказывается такой, что ее площадь минимально возможная в данных условиях. Почему пленка обязательно мыльная? Все дело в структуре мыльной пленки. Мыло богато так называемыми поверхностно-активными веществами, концы длинных молекул которых по-разному относятся к воде: один конец охотно соединяется с молекулой воды, другой к воде безразличен. Поэтому мыльная пленка обладает сложной структурой: образующий ее мыльный раствор как бы «армирован» частоколом упорядоченно расположенных молекул поверхностно-активного вещества, входящего в состав мыла.

Вернемся к мыльным пузырям. Наверное, каждому доводилось не только наблюдать эти удивительно красивые творения, но и пускать их. Они сферичны по форме и долго могут свободно парить в воздухе. Давление внутри пузыря оказывается больше атмосферного. Избыточное давление обусловлено тем обстоятельством, что мыльная пленка, стремясь еще больше уменьшить свою поверхность, сдавливает воздух внутри пузыря, причем чем меньше его радиус, тем большим оказывается избыточное давление внутри пузыря.

Свободная поверхность жидкости стремится сократиться. Это можно наблюдать в случае, когда жидкость имеет форму тонкой пленки. Примером такого состояния могут служить мыльные пленки, подобные тем, которые вы получили в детстве, выдувая мыльные пузыри. Так как толщина мыльных пленок очень мала, жидкость в пленке можно рассматривать как два поверхностных слоя, не учитывая влияния молекул, находящихся между слоями. Получив мыльный пузырь от трубки, с помощью которой он был получен. Вы заметите, что пузырь уменьшается. Это свидетельствует о сокращении поверхности мыльной пленки.

2. Метод проволочной рамки.

Возьмите проволочный четырехугольный каркас и соедините его противоположные вершины тонкой ненатянутой нитью. Опустив каркас в мыльную воду, вы заметите, что вытянутый из воды каркас затянут мыльной пленкой. Проколов пленку по одну сторону нити, вы увидите, что нить примет форму дуги. Опыт свидетельствует о том, что поверхность мыльной пленки сокращается.

Свойство поверхности жидкости сокращается можно истолковать как существование сил, стремящихся сократить эту поверхность. Эти силы называют силами поверхностного натяжения.

С помощью описанного ниже опыта можно найти способ измерения сил поверхностного натяжения. Если опустить в мыльную воду проволочный каркас, вынув его из воды, легко заметить, что верхняя часть каркаса (до упора) затянута мыльной пленкой. Если потянуть за подвижную сторону этой рамки вниз, то пленка растянется, а если подвижную сторону отпустить, то пленка сократится.

Пленка, образовавшаяся на рамке, представляет собой тонкий слой жидкости и имеет две свободные поверхности.

Поверхностное натяжение измеряется силой, с которой поверхностный слой действует на единицу длины того или иного контура на свободной поверхности жидкости по касательной к этой поверхности. В Международной системе единиц эта величина измеряется в ньютонах на метр (1 Н/м).

3. Метод капли.

Проще всего уловить характер сил поверхностного натяжения, наблюдая образование капли у плохо закрытого или неисправного крана. Пока капля мала, она не отрывается: ее удерживают силы поверхностного натяжения (поверхностный слой выполняет роль своеобразного мешочка). Чем больше капля, тем большую роль играет потенциальная энергия силы тяжести. Всмотритесь внимательно, как постепенно растет капля, образуется сужение – шейка, и капля отрывается.

Отрыв капли происходит в тот момент, когда ее вес становится равным равнодействующей сил поверхностного натяжения, действующих вдоль окружности шейки капли. Не нужно много фантазии, чтобы представить себе, что вода как бы заключена в эластичный мешочек, и этот мешочек разрывается, когда вес превысит его прочность.

В действительности, конечно, ничего, кроме воды, в капле нет, но сам поверхностный слой воды ведет себя как растянутая эластичная пленка.

А видели вы когда-нибудь очень большие капли?

В обычных условиях таких капель нет. И это не случайно – капли большого диаметра неустойчивы и разрываются на маленькие.

4. Опыт «Пробирка».

Первый взгляд на чай, налитый в чашку, подтверждает известное положение, что жидкость своей формы не имеет, а принимает форму сосуда, в который она налита. Возьмем пробирку, наполненную водой. Перевернем на книгу или открытку и будем постепенно вытаскивать открытку. Ни одна капля не пролилась, зато поверхность воды вздулась, образовав «горку». Все системы стремятся уменьшить свою энергию. Точно так же сила поверхностного натяжения стремится сократить до минимума площадь поверхности жидкости. Из всех геометрических форм шар обладает при данном объеме наименьшей поверхностью. Так что собственная форма жидкости – шар. Большое количество жидкости не может сохранить шарообразную форму; она изменяется под действием силы тяжести. Если устранить действие силы тяжести, то под действием молекулярных сил жидкость примет форму шара.

5. Опыт «Плато»

Если взять смесь воды и спирта и поместить в нее каплю жидкого масла, то в какой-то момент сила тяжести уравновесится силой Архимеда и образовавшийся масляный шар, свободно покоящийся в смеси. Этот шар от разлета по молекулам удерживает сила поверхностного натяжения. Устранить действие силы тяжести при изучении поверхностного натяжения жидкостей впервые догадался в середине прошлого века бельгийский ученый Ж. Плато, свой метод Плато применил для исследования различных явлений.

6. Роль поверхностного натяжения в жизни.

Роль поверхностного натяжения в жизни очень разнообразна. Осторожно положите иглу на поверхность воды. Поверхностная пленка прогнется и не даст игле утонуть. По этой же причине легкие водомерки могут быстро скользить по поверхности воды, как конькобежцы по льду.

Прогиб пленки не позволит выливаться воде, осторожно налитой в достаточно частое решето. Так что можно «носить воду в решете». Это показывает, как трудно порой, даже при желании, сказать настоящую бессмыслицу. Ткань – это то же решето, образованное переплетением нитей. Поверхностное натяжение сильно затрудняет просачивание воды сквозь нее, и потому она не промокает насквозь мгновенно.

В своем стремлении сократиться поверхностная пленка придавала бы жидкости сферическую форму, если бы не тяжесть. Чем меньше капелька, тем большую роль играют поверхностные силы по сравнению с объемными (тяготением). Поэтому маленькие капельки росы близки по форме к шару. При свободном падении возникает состояние невесомости, и поэтому дождевые капли почти строго шарообразны. Слабый дождик промочил бы нас насквозь. Из-за преломления солнечных лучей в этих каплях возникает радуга. Не будь капли сферическими, не было бы, как показывает теория, и радуги.

Силы притяжения между молекулами на поверхности жидкости удерживают их от движения за ее пределы.

Молекулы жидкости испытывают силы взаимного притяжения — на самом деле, именно благодаря этому жидкость моментально не улетучивается. На молекулы внутри жидкости силы притяжения других молекул действуют со всех сторон и поэтому взаимно уравновешивают друг друга. Молекулы же на поверхности жидкости не имеют соседей снаружи, и результирующая сила притяжения направлена внутрь жидкости. В итоге вся поверхность воды стремится стянуться под воздействием этих сил. По совокупности этот эффект приводит к формированию так называемой силы поверхностного натяжения, которая действует вдоль поверхности жидкости и приводит к образованию на ней подобия невидимой, тонкой и упругой пленки.

Одним из следствий эффекта поверхностного натяжения является то, что для увеличения площади поверхности жидкости — ее растяжения — нужно проделать механическую работу по преодолению сил поверхностного натяжения. Следовательно, если жидкость оставить в покое, она стремится принять форму, при которой площадь ее поверхности окажется минимальной. Такой формой, естественно, является сфера — вот почему дождевые капли в полете принимают почти сферическую форму (я говорю «почти», потому что в полете капли слегка вытягиваются из-за сопротивления воздуха). По этой же причине капли воды на кузове покрытого свежим воском автомобиля собираются в бусинки.

Силы поверхностного натяжения используются в промышленности — в частности, при отливке сферических форм, например ружейной дроби. Каплям расплавленного металла просто дают застывать на лету при падении с достаточной для этого высоты, и они сами застывают в форме шариков, прежде чем упадут в приемный контейнер.

Можно привести много примеров сил поверхностного натяжения в действии из нашей будничной жизни. Под воздействием ветра на поверхности океанов, морей и озер образуется рябь, и эта рябь представляет собой волны, в которых действующая вверх сила внутреннего давления воды уравновешивается действующей вниз силой поверхностного натяжения. Две эти силы чередуются, и на воде образуется рябь, подобно тому как за счет попеременного растяжения и сжатия образуется волна в струне музыкального инструмента.

Будет жидкость собираться в «бусинки» или ровным слоем растекаться по твердой поверхности, зависит от соотношения сил межмолекулярного взаимодействия в жидкости, вызывающих поверхностное натяжение, и сил притяжения между молекулами жидкости и твердой поверхностью. В жидкой воде, например, силы поверхностного натяжения обусловлены водородными связями между молекулами (см. Химические связи). Поверхность стекла водой смачивается, поскольку в стекле содержится достаточно много атомов кислорода, и вода легко образует гидрогенные связи не только с другими молекулами воды, но и с атомами кислорода. Если же смазать поверхность стекла жиром, водородные связи с поверхностью образовываться не будут, и вода соберется в капельки под воздействием внутренних водородных связей, обусловливающих поверхностное натяжение.

В химической промышленности в воду часто добавляют специальные реагенты-смачиватели — сурфактанты , — не дающие воде собираться в капли на какой-либо поверхности. Их добавляют, например, в жидкие моющие средства для посудомоечных машин. Попадая в поверхностный слой воды, молекулы таких реагентов заметно ослабляют силы поверхностного натяжения, вода не собирается в капли и не оставляет на поверхности грязных крапин после высыхания (см.

Молекулы жидкости располагаются настолько близко друг к другу, что силы притяжения между ними имеют значительную величину; эти силы создают поверхностное натяжение, действующее в плоскости свободной поверхности. Поверхностное натяжение наиболее наглядно демонстрируется на опытах с пленками жидкостей. Некоторые жидкости, как например мыльная вода, могут образовывать тонкие пленки. Если опустить проволочную рамку, одна из сторон которой подвижна (рис. 8.3), в мыльный раствор, а затем вынуть, то она окажется затянутой мыльной пленкой. Сила , порождаемая поверхностным натяжением и приложенная к перекладине вызывает поднятие перекладины вверх. Чтобы сохранить перекладину неподвижной, к ней нужно подвесить груз

Выделим на произвольной поверхности жидкости единичный отрезок (рис. 8.4, а). На выделенный единичный элемент длины по нормали к нему и по касательной к поверхности действует сила которая называется коэффициентом поверхностного натяжения или просто поверхностным натяжением. Поверхностное натяжение равно силе, действующей на единицу длины и направленной по нормали к элементу длины и по касательной к поверхности жидкости. Величина измеряется в дин/см и

Поверхностное натяжение уменьшается с повышением температуры и в критической точке равно нулю. Примеси сильно сказываются на величине

поверхностного натяжения. Так, например, для чистой воды при комнатной температуре дин/см, растворение же мыла снижает эту величину до 45 дин/см, а растворение поваренной соли, напротив, приводит к ее увеличению.

Рисунок 8.4, б поясняет происхождение поверхностного натяжения. На единичном отрезке точками обозначены молекулы. Силы характеризуют усредненное взаимодействие выделенных молекул с другими молекулами поверхности жидкости. Очевидно, если на единицу длины приходится X частиц, то

Вернемся к рисунку 8.3. Силы поверхностного натяжения, действующие на подвижную перекладину, определяются произведением:

где I - длина перекладины, а коэффициент 2 учитывает двойную поверхность пленки. Если при постоянной температуре внешними силами пленка растягивается так, что перекладина смещается на расстояние (положение рис. 8.3), то работа сил поверхностного натяжения окажется равной:

где изменение поверхности жидкости (с двух сторон пленки). Полученное выражение позволяет дать иное определение

Коэффициент поверхностного натяжения численно равен работе, необходимой для образования единицы площади новой поверхности при постоянной температуре.

На молекулы поверхностного слоя, кроме сил , действующих вдоль поверхности, оказывают действие силы направленные по нормали к поверхности внутрь жидкости (рис. 8.5); последние являются результатом притяжения со стороны молекул глубинных слоев среды.

При увеличении поверхности жидкости часть ее молекул переходит из глубины на поверхность, при этом совершается работа против сил и потенциальная энергия поверхностного слоя возрастает.

Первое начало термодинамики, учитывая работу сил поверхностного натяжения, можно записать в виде

Если изотермическое изменение состояния жидкости состоит только в уменьшении площади ее поверхности, то работой внешнего давления можно пренебречь и записать.