Телескоп «Хаббл» и диагностика рака груди

Техника обработки изображения, разработанная для телескопа «Хаббл», сегодня помогает медикам раньше диагностировать рак груди. Она была создана перед полетом для обслуживания аппарата на орбите в 1993 году, чтобы улучшить качество размытых фотоснимков, однако теперь может применяться для поиска микроскопических уплотнений в ткани молочной железы на ранней стадии онкологических заболеваний. Сейчас технологию тестирует группа астрономов из Научного института космического телескопа (Space Telescope Science Institute) в Балтиморе и врачей из Университета Джонса Хопкинса и Медицинского центра Джорджтаунского университета в Вашингтоне. Если испытания пройдут успешно, очень скоро космические технологии оптимизации нечетких изображений можно будет найти в кабинетах маммографии.

Марсианская миссия Viking и прочные шины

Когда в конце 60-х NASA планировало запуск исследовательской миссии к Марсу, для аппаратов «Викинг-1» и «Викинг-2» были разработаны особые ультрапрочные шины. Ученые понимали, что автоматический космический аппарат не сможет совершить посадку на Красной планете, если будет оснащен обыкновенными колесами, и заключили контракт на производство шин с компанией Goodyear. Ее специалисты создали для марсианской миссии новый волокнистый материал, который был в пять раз прочнее стали. «Викинг-1» и «Викинг-2» успешно сели на Марсе и проработали значительно дольше срока, на который рассчитывали специалисты, а Goodyear внедрили разработку в коммерческие линейки своей продукции. Благодаря этому сегодня некоторые шины этой компании способны «пройти» на 16 000 км больше, чем их аналоги.

«Аполлон-11» и спортивные кроссовки

Лунные ботинки, разработанные для высадки американских космонавтов на Луну в 1969 году, являются «предками» современных кроссовок. Обувь участников лунной миссии была снабжена стельками, уменьшавшими давление на ступню, и «системой вентиляции». Сегодня эти технологии применяют компании-производители спортивных товаров. Тем не менее, 10 пар ботинок-первопроходцев так и остались на Луне: вместо них на борт взяли грунт и камни. Сегодня они все еще могут оставаться там. Если обувь цела, металлические пряжки и замки, скорее всего, выглядят так же, как в день высадки: на Луне нет кислорода, а значит, окисления не происходит. Однако силиконовые стельки и синтетическая ткань должны были истончиться из-за процессов газовыделения. Если кто-нибудь дотронется до космических ботинок, они, вероятно, рассыплются в пыль.

МКС и «липучка»

Текстильные застежки, которые также называют «липучками» и велкро, были изобретены в 1948 году и запатентованы в 1955. Впервые пользоваться ими начали космонавты, аквалангисты и горнолыжники. Лишь затем велкро проникли в текстильную промышленность и стали доступны обычным покупателям. Сегодня в российском сегменте Международной космической станции «липучки» используются для крепления мелких предметов к стенам модулей изнутри. Внутренняя поверхность отсеков здесь оклеена мягким материалом с микропетлями, а инструменты, канцелярские принадлежности и другие предметы снабжены полосками материала с микрокрючками. Если прижать такой карандаш к панели на стене, он прилипнет. Полоски материала с микропетлями есть и на одежде космонавтов: ведь из карманов в условиях невесомости все попросту «уплывает».

Модели ракетных двигателей и пересадка сердца

Технологии, разработанные NASA для моделирования течения жидкостей в ракетных двигателях, помогли американским медикам разработать миниатюрный сердечный насос, или бивентрикулярное вспомогательное устройство. Пациентам, которые ждут пересадки сердца, оно зачастую бывает жизненно необходимо. Такие аппараты способны поддерживать кровообращение даже в случаях, когда сердце работает очень плохо. Это позволяет создать «промежуточный этап трансплантации» и дает пациентам возможность дождаться появления подходящего донора.

Новый прибор имеет размер 2,5 на 7,5 см и весит всего 113 г: в 10 раз меньше, чем другие современные устройства вспомогательного кровообращения. Благодаря этому в 95% случаев инфекций, связанных с использованием подобных аппаратов, удается избежать. При этом сердечный насос может до восьми часов работать от аккумуляторов, предоставляя пациентам возможность заниматься обычными делами каждый день.

Космическая система очистки воды и небьющиеся очки

История очков с ударопрочными линзами, которые сегодня может купить в любом магазине оптики, началась в 1972 году. Тогда Управление по контролю за продуктами и лекарствами США (FDA) обязало производителей очков перейти на пластик, который невозможно разбить. Однако у нового материала существовал один минус: на нем быстро появлялись царапины. Решить эту проблему помогло открытие Теда Уайдевена - специалиста Научно-исследовательского центра им. Эймса NASA, который работал над системами очистки воды на космических кораблях. Уайдевен разработал технологию нанесения тонкой пластиковой пленки на поверхность фильтра для воды с помощью электрических разрядов, пропущенных сквозь пары органических соединений. Постепенно ноу-хау усовершенствовали и начали использовать для нанесения защитного покрытия на прозрачные забрала космических шлемов и другие пластиковые поверхности. В 1983 году компании Foster-Grant удалось получить у NASA лицензию на использование технологии в производстве оптики, и она попала в коммерческую сферу.

Научный прогресс последних лет позволил человеку значительно расширить понимание о Вселенной, но в ее глубинах по-прежнему остается множество неизведанного. Масштабное освоение космоса сдерживает дороговизна и низкая эффективность космических аппаратов. Аэрокосмические агентства и компании всего мира разрабатывают новые космические технологии, которые призваны решить эту проблему и сделать возможными межпланетные путешествия и продолжение поисков неземных форм жизни.

Лифт в космос

Компания Obayashi Corporation из Японии в 2012 году заявила о своей работе над созданием лифта в космос, которая должна закончится к 2050 г. Для этого планируется строительство космодрома на Земле, который будет связан с размещенной на высоте 35 500 км от земной поверхности космической станцией. Там будут располагаться жилые помещения и космические лаборатории. Объекты будут соединены с помощью кабеля из углеродных нанотрубок и генетически модифицированного паучьего шелка. Новые технологии позволят лифту достигать скорости 201 км/ч и вмещать до 30 пассажиров. Планируемая продолжительность подъема составляет около 8 дней.

Skylon

Разработка английской компании Reaction Engines Limited – космический самолет Skylon – будет осуществлять взлет и посадку на обычной взлетно-посадочной полосе и может использоваться как самолет, а в верхних слоях атмосферы после достижения сверхзвуковой скорости переходить в режим ракеты для выхода на околоземную орбиту. Это становится возможным благодаря специально разработанному воздушно-реактивному двигателю Sabre, который работает по новейшей технологии предварительного охлаждения кислорода из забортового воздуха или собственных баков. Ожидается, что Skylon позволит в 15-20 раз уменьшить стоимость «космической» доставки грузов объемом 12-15 т на орбиту Земли.

Многочисленный мусор, вращающийся в космосе недалеко от Земли, периодически уничтожает или повреждает другие важные объекты. А его постоянно увеличивающееся количество заставляет ученых разрабатывать новые технологии по его ликвидации. Специалисты института EPFL (Швейцария) представили для этих целей космический аппарат CleanSpace размером 30х30х10 см, рассчитанный на одноразовое использование. Его первой целью должен стать швейцарский спутник Swisscube, выпущенный на орбиту в 2009 г. Аппарат-уборщик захватит свою цель и переместится с ней в верхние слои атмосферы, где оба должны сгореть. Стоимость проекта CleanSpace оценивается в $11 000 000, а при успешном выполнении миссии планируется наладить его серийное производство, чтобы поддерживать чистоту в околоземном пространстве.

James Webb Space Telescope

В 2017 г. космическое агентство NASA получило высокотехнологичный космический телескоп, который должен помочь ученым в поисках проявлений жизни в бескрайних просторах Вселенной. Аппарат стоимостью 8,8 млрд. долл., созданный по новым технологиям, позволит исследовать в космосе множество наиболее отдаленных планет, вычислять их размеры и замерять содержание в атмосфере воды, углекислого газа и других веществ. Главная отличительная особенность телескопа James Webb – дальность действия. он способен сканировать пространство на отметке 300 млн лет после Большого взрыва, когда началось зарождение видимого света.

Ученым из КНДР удалось создать уникальный экземпляр двигателя, который работает, нарушая законы сохранения импульса. Внешне он выглядит как положенное на бок ведро, работает за счет преобразования микроволн в тягу, а питается от солнечной энергии. Принцип его работы противоречит всем известным законам физики, поэтому некоторые специалисты склонны считать, что экспериментальный образец построен с ошибкой и реальные образцы не будут работать. Но если все рассчитано верно, то использование новой технологии EmDrive позволит запускать аппараты для освоения глубокого космоса без жидкого топлива и разгонять их до невероятных скоростей. К примеру, они смогут достигать границ Солнечной системы в течение 1 года, а не нескольких десятилетий.

Космический аппарат, не превышающий размеров легкового автомобиля, разработан специалистами NASA для исследования атмосферы Солнца. После 7-летней раскрутки вокруг Венеры Parker Solar Probe направится прямо к Солнцу, чтобы приблизиться к его поверхности на расстояние около 6 000 000 км. До этого к главной Звезде удавалось приблизиться только на 43 000 000 км с помощью аппарата Гелиос 2.

Начало миссии запланировано на 2018 г., а ее продолжительность рассчитана на 3 года, в течение которых зонд он пройдет вблизи Солнца 24 раза и сможет приблизиться к нему на расстояние в 10 раз ближе, чем орбита Меркурия. Для защиты от экстремальных температур (до 2500 °С) он оборудован специальным щитом из композитного углерода толщиной 12 см.

«Венероход»

Специалисты лаборатории NASA работают над новыми технологиями для изучения Венеры. Основная проблема заключается в том, что ее окружающая среда довольно агрессивна: атмосфера нагревается до 462°С и в 90 раз превышает плотность земной атмосферы, поэтому здесь формируется давление, которое не в состоянии выдержать даже самый прочный корпус атомной лодки. В связи с этим требуется создать космический аппарат с минимальным количеством электроники, иначе она очень быстро выйдет из строя.

Новый проект под названием AREE (Automaton Rover for Extreme Environments) представляет собой планетоход, который будет оснащен ветряным двигателем и солнечными панелями для работы. Вся информация будет собираться с помощью механических компьютеров и транслироваться на орбитальную станцию с использованием азбуки Морзе.

Ученые NASA работают над разработкой окололунной орбитальной лаборатории, запуск которой планируется на начало 2020-х г. г. Новая Deep Space Gateway призвана заменить МКС, после того, как к 2024 г. закончится срок службы последней. Среди главных задач проекта отмечается испытание новых технологий освоения дальнего космоса и подготовки к дальним межпланетным перелетам, в частности, к путешествию на Марс.

Расположение станции на окололунной орбите позволит получить уникальную среду для изучения космоса и его влияния на человека. Deep Spce Gateaway планируется оснастить радиообсерваторией, подходящей для анализа излучения эпохи «Темных веков» (соответствует времени 380 000 – 550 000 лет после Большого взрыва).

Технология SpiderFab

Компания Tethers Unlimited работает над созданием новейшей технологии объемной печати SpiderFab, которая позволит печатать и собирать космические корабли прямо в космосе.

Проектом предусмотрена разработка паукообразных роботов в условиях невесомости будут создавать на 3D принтерах из полимерных и других материалов отдельные детали и впоследствии собирать из них космические аппараты. В результате их не придется запускать с Земли, что значительно сократить стоимость кораблей и появится возможность собирать конструкции гораздо больших размеров, чем это позволяют современные технологии.

Лазерная связь

Для успешного освоения космоса важное значение имеет связь, но большинство современных передатчиков потребляет для передачи данных слишком большое количество энергии, что особенно критично во время длительных космических путешествий. Помочь в этом вопросе может использование новых технологий передачи данных посредством лазера, благодаря которой скорость передачи по сравнению с радио передатчиками увеличится в 10-100 раз.

В качестве эксперимента агентство NASA запустило в сентябре 2017 г. лазерную систему передачи данных LLCD на спутнике LADEE, который занимается исследованием лунной атмосферы. Система показала рекордные показатели: лазерный луч передавал данные на Землю со скоростью 622 Мб/с, а обратно – со скоростью 20 Мб/с.

Современные астронавты все еще вынуждены мириться с невесомостью. Создать искусственную гравитацию можно за счет центробежной силы, заставив корабль или орбитальную станцию вращаться вокруг своей оси. Однако этот способ приемлем лишь для станций величиной с футбольное поле. На более мелких объектах скорость вращения будет такой, что астронавты начнут испытывать дезориентацию и головокружение — вплоть до потери сознания.

Для человека не только утомительно, но и опасно выходить в открытый космос. Было бы неплохо, если бы все «внешние» работы за астронавтов совершали летающие роботы. Специалисты NASA уже сделали первый шаг к достижению этой цели, создав шарообразную автоматизированную камеру AERCam, которая будет проверять внешнюю поверхность Международной космической станции. В дальнейшем роботы смогут самостоятельно проводить техобслуживание и ремонт.


Чтобы покинуть корабль или вновь зайти на борт, астронавт проходит через воздушный шлюз. Альтернативой этой неудобной и небезопасной технологии может стать «порт скафандров» с герметичной кабиной и скафандром снаружи. Астронавты больше не будут страдать кессонной болезнью. Также уменьшится количество травм, связанных с длительным пребыванием в скафандре.


Цель международного проекта MAGDRIVE — создание бесконтактных механических узлов для космической техники. Зазор между частями механизмов обеспечивают магниты с одноименными полюсами. Принцип магнитной левитации, который применяется в поездах на воздушной подушке, позволит забыть о проблемах истирания, температурных деформаций и замерзания антифрикционных составов.


Для успеха космических миссий очень важна связь. Однако современные радиопередатчики потребляют слишком много энергии, что особенно критично в длительных межпланетных путешествиях. Одно из возможных решений проблемы — использование лазера, который позволит передавать данные со скоростью от 10 до 100 раз выше, чем радиопередатчик. Ожидается, что лазерные передатчики начнут использовать в 2017 году.


Человекоподобный робот Робонавт разработан NASA совместно с компанией General Motors. На сегодняшний момент один из Робонавтов находится на борту Международной космической станции, выполняя некоторые виды работ наряду с астронавтами. Однако для более широкого использования конечностям машины не хватает гибкости.


CleanSpace One — небольшой ящик с захватывающим устройством для сбора космического мусора. Разработку Швейцарского федерального института технологий уже дважды применяли для того, чтобы убрать с орбиты швейцарские спутники. В будущем подобные устройства будут блюсти чистоту в околоземном пространстве, где сейчас болтается около 55 тысяч различных объектов, в том числе и рукотворных.


Серьезную угрозу для покорителей космоса представляет радиация. Во время путешествия на Марс астронавты получают дозу радиации, в сто раз превышающую годовую норму на Земле. Один из способов решить эту проблему предложила британская Лаборатория Резерфорда-Эплтона. Их разработка называется мини-магнитосферой. Идея состоит в том, чтобы создать вокруг космического корабля магнитное поле, сходное с магнитным полем Земли.


Специалисты национальной лаборатории в Беркли трудятся над технологиями синтеза биологических молекул. Эти разработки позволят астронавтам создавать еду, лекарства, горючее из минералов, газов и почв, собранных на чужеродных планетах, а также из продуктов человеческой жизнедеятельности. Биосинтез открывает безграничные возможности. Например, еду можно получить из бактерии спирулины, а микроб Methanobacterium thermoautotrophicum пригодится для производства метана и кислорода.


В 2012 году японская строительная компания Obayashi Corporation пообещала, что к 2050-му создаст космический лифт высотой 96000 км. В лифте будут использоваться кабины на магнитных подушках. Благодаря японской разработке стоимость вывода килограмма груза на орбиту снизится с нынешних $22 000 до $200.

Многие изобретения, сделанные с прицелом на космос, в итоге находят свое применение на Земле — в виде детского питания, подошв для обуви, солнцезащитных очков, которые поглощают ультрафиолетовое излучение, прочих полезных и приятных предметов. Даже любопытно, как скоро новые научно-фантастические технологии станут частью повседневной жизни.

В мире в последние годы стремительно развивается космическая отрасль. Несмотря на многие проблемы, человечество вкладывает каждый год много средств на изучение космоса. Стран, которые это делают можно посчитать по пальцам. Большая доля приходится на американский «NASA».

Рассмотрим основные технологии будущего в космической отрасли:

Ученые «NASA» интенсивно работают над будущими технологиями, которые позволят человечеству быстро и дешево исследовать космос. Агентство выбрало в 2017 году восемь предложений по будущим космическим технологиям, которые специалисты смогут использовать в ближайшие годы.

В рамках программы II фазы «NASA», определенно все предложения смогут получить двухлетнее финансирование в размере 500 000 долларов США. Средства будут использованы для подготовки концепции и ее представления для агентства.

1. Подходы к созданию в космосе растущей среды обитания

Идея создания вращающегося модуля корпуса, который будет генерировать собственную гравитацию и обеспечивать защиту от космических лучей. Такая станция может быть расширена по мере необходимости в космическом пространстве. Такие интересные концепции наблюдались во многих научно-фантастических фильмах.

2. Продвижение местообитаний человечества на Марс

Это проект Джона Брэдфорса из Spaceworks Engineering. Предполагается создание передовой жилой системы и транспортировку людей на Марс. Система доставит экипаж в оцепенении, то есть в состоянии пониженной температуры и активности.

Эта инновационная концепция релятивистского движения. Его авторы знают о том, что его реализация будет проблематичной, но в то же время они утверждают об этой возможности. Благодаря этому корабль сможет достичь скорости, необходимой для межзвездного путешествия.

4. Разработка плазменного привода

Еще один интересный проект, касающийся строительства нового космического привода. На этот раз это будет плазменный привод, предназначенный для небольшого транспортного средства, свободно перемещающегося в космосе.

5. Демонстрация полета новой спутниковой системы

Предполагает использование двух сверхлегких самолетов, соединенных тонким кабелем. Самолеты, использующие солнечную энергию и ветер, высоко поднимающиеся в атмосфере, могут оставаться в воздухе в течение очень долгого времени. Инструменты, выполняющие различные задачи, от общения до научных исследований, будут размещаться на их бортах. По словам создателей, такое решение будет альтернативой спутникам, а также намного дешевле, чем они.

6. Аэродромный захват магнитосферных ядер для пилотируемых полетов и планетарные глубинные орбитальные системы

Эта система будет использовать дипольное магнитное поле, содержащее намагниченную плазму. В результате взаимодействия с атмосферой планет такое поле будет тормозить посадочный носитель, делая этот маневр намного безопаснее. Эта технология также позволяет замедлить работу автомобиля без нагрева, поскольку он будет защищен плазмой. Магнитный барьер, защищающий транспортное средство, может достигать диаметра 100 метров.

7. Криогенная поверхность

Представляет собой специальное покрытие толщиной 10 миллиметров, которое отражает более 99,9 процента солнечной радиации. Если его разместить на расстоянии одной астрономической единицы от Солнца и от Земли, внутри такой оболочки будет постоянная температура ниже 50 Кельвинов.

Таким образом, можно легко транспортировать, например, жидкий кислород на Марс. Благодаря этому колонизация планеты станет намного проще.

8. Дальнейшая разработка апертуры, точного чрезвычайно большого отражательного телескопа.

Это проект, созданный для больших телескопов. В последние годы зеркала таких устройств должны были чрезвычайно точно быть установлены на Земле. В сложенном виде они должны были вписаться в багажное отделение, а затем развернуты уже в космосе, что является сложной и рискованной операцией.

Благодаря этому проекту будут созданы зеркала, подобные диафрагме, что означает, что они будут занимать много места, чтобы их можно было переносить на большую орбиту. Эти конструкции уже были бы идеально сформированы в пространстве.

Космические туманности

Услышав словосочетание «космические технологии», большинство жителей Земли, скорее всего, представят себе взлетающую ракету, возможно, Международную космическую станцию или, на худой конец, фантастический космический корабль, неспешно плывущий в кадре через пустоту космоса. Так уж повелось, что большинство наших ассоциаций с этой отраслью мы получили из художественного кинематографа или книг. Те, кто интересуется космонавтикой, знают, что благодаря реальным «космическим технологиям» люди могут добраться до орбиты высоко над Землей или даже запустить станцию к соседней планете.

Кто-то, возможно, вспомнит про GPS, спутниковое телевидение и интернет или даже про метеорологию, а другой просто задастся вопросом: зачем все это нужно, ведь космос так далеко? К счастью, реальность интересней: космос намного ближе к нам, чем вы думаете. Наследие космонавтики подарило нам сотни небольших вещей, которые ежедневно окружают нас в быту и упрощают наши жизни. Сегодня мы расскажем о нескольких из них.

Межконтинентальные ракеты и ваш автомобиль

В 1953 году Норман Ларсен, основатель Rocket Chemical Company, выполнял заказ аэрокосмического подрядчика США компании Convair и разрабатывал новое водоотталкивающее вещество. Популярная корпоративная легенда говорит, что тридцать девять попыток были неудачными, но сороковая дала необходимый результат, в честь чего новую чудо-формулу так и назвали - WD-40 («Водоизместитель-40»).

Convair использовали новую смазку для защиты сверхтонких стенок топливных баков и электроники ракет Atlas во время перевозки и хранения. Межконтинентальные баллистические ракеты Atlas, конечно, разрабатывались как грозное оружие и даже стояли на боевом дежурстве во время Карибского кризиса, но постепенно списывались военными, когда их место занимали более совершенные орудия уничтожения. Заменяемые на ракеты Titan и Minuteman, они передавались NASA для целей вполне научных, а в рамках программы Mercury в 1962 году обеспечили первый американский орбитальный полет астронавта Джона Гленна.

Слева  -  запуск межконтинентальной баллистической ракеты Atlas B. Справа  -  Atlas D с кораблем Mercury Friendship 7 и Джоном Гленном на борту. Фото: USAF \ NASA.



Джон Гленн на орбите. Фото: NASA



Полет космического корабля Mercury в представлении художника

Формула водооталкивающей смазки Нормана Ларсена оказалась настолько удачной, что конструкторы Convair использовали ее и в собственных целях, обрабатывая запчасти личных автомобилей. Осознав потенциальный коммерческий успех, в 1958 году Rocket Chemical Company начинают продажи нового вещества в локальных магазинах в Сан Диего. А в 1969-м компания переименовывается, взяв название самого важного на тот момент предложения в своем портфеле  -  WD-40. Сегодня чудо-смазка продается в более чем половине стран мира и знакома, пожалуй, почти каждому автомобилисту (и просто крепкому хозяйственнику). А в спектре возможных способов ее использования и рекомендаций по применению уже невозможно отличить миф от реальности: от очистки заржавевших деталей до удаления собачьих экскрементов или даже выведения жвачки из волос.

Винтажная упаковка WD-40 и современная

Межпланетные станции и цифровая фотография

В 1992 году Дэниел Голдин, назначенный на место администратора NASA (к слову, прослуживший на этой должности при трех президентах США), обрисовал новый принцип работы агентства через три простых слова: «Быстрее, лучше, дешевле». Этот принцип поставил перед инженерами миссий конкретные задачи (например, миниатюризация цифровых камер с CCD-матрицей, используемых в межпланетных миссиях, без потери научной ценности получаемых снимков).

В результате инженер лаборатории реактивного движения NASA Эрик Фоссум представил CMOS Active-Pixel Sensors. Само по себе использование металл-оксидных полупроводников к девяностым годам XX века не было чем-то новым, как и теоретическая возможность использовать их светочувствительность вкупе с APS, но практическая реализация Голдина совершила переворот на рынке цифровой фотографии. Новые сенсоры потенциально были дешевле в производстве, менее энергозатратны и давали бо́льшие возможности в миниатюризации камеры и работе с изображением.

Первый 10-мегапиксельный CMOS-сенсор Aptina Imaging для компактных цифровых камер. Aptina - правообладатель технологий Photobit. Изображение: Aptina Imaging

Фоссум понял, что его разработка будет востребована и на Земле. В 1995-м он основал компанию Photobit и запатентовал новую технологию. В дальнейшем история компании Photobit - это история поглощений и переименований, а в результате в 2017-м CMOS-матрицы используются почти повсеместно - начиная от мобильных телефонов и заканчивая камерами автомобилей и медицинских приборов. Хотите сделать «селфи»? Вы просто космос!



CMOS-сенсоры используются в камерах ваших смартфонов…



…в ваших зеркалках…



…автомобильных камерах заднего вида…



…и даже медицинских камерах и эндоскопах - и вообще везде, где важны небольшой размер и энергопотребление

Кстати, использование слова «пиксель» впервые было зафиксировано в 1965 году в работе инженера лаборатории реактивного движения Фредерика Биллингсли. Он использовал это слово для описания минимальных элементов изображений, получаемых от станций, отправленных к Луне и Марсу.

Марсианские пузырьки в земном пиве

Сложно представить себе что-то более земное, чем бокал пива в конце тяжелого дня. Кстати, это удовольствие недоступно космонавтам на орбите, но, возможно, это справедливая цена за лучший в известной вселенной вид из окна на нашу планету. Роберт Зубрин  - не астронавт, но американский инженер, основатель «Марсианского общества» и, пожалуй, один из самых ярких сторонников немедленной колонизации землянами соседних миров.

Долгое время он работал над концептами планов доставки людей на Марс и инструментами, которые позволят будущим поселенцам получать часть необходимых ресурсов прямо из атмосферы Красной планеты: кислород или топливо для ракетных двигателей и роверов. Некоторые из разработанных его командой технологий нашли применение на Земле - например, в добыче нефти и природного газа. Но и Зубрину не чуждо все земное - из «приземленной» технологии родилась еще более «приземленная».

Будущим колонистам Марса придется использовать ресурсы планеты для развития колонии. Изображение: NASA

При производстве пива углекислый газ образуется естественным образом, но бо́льшая его часть рассеивается в воздухе еще в процессе приготовления. Крупные производители могут позволить себе установку довольно дорогих систем, задерживающих CO 2 для последующего повторного обогащения. Небольшие пивоварни закупают дополнительный объем у сторонних поставщиков, что в итоге увеличивает себестоимость конечного продукта. Внезапно на помощь приходят технологии, разрабатываемые для будущих колонистов Марса! Компания Зубрина Pioneer Energy представляет довольно необычный для своей деятельности продукт  -  систему обогащения углекислым газом для крафтовых пивоварен. Компактный комплекс задерживает производимый при приготовлении CO 2 и, по подсчетам производителя, может сохранять порядка 5 тонн углекислого газа в месяц и сэкономить до $15 тыс. в год для небольшой пивоварни.

CO 2 Craft Brewery Recovery System. Фото: Pioneer Energy

В 2015-м Pioneer Energy получили десятки заказов на новую систему. Согласно оценкам, потенциальный рынок  -  около 20 тыс. крафтовых пивоварен по всему миру. Встретите ли вы пузырьки, полученные с помощью околокосмических технологий в Беларуси, науке вряд ли известно. Но как это обычно бывает, там, где есть новый подход, удешевляющий ваше производство, довольно быстро появляются другие возможности его применения и аналоги, «не уступающие оригиналу».

Одежда и космические аксессуары

Популярная интернет-легенда гласит, что благодаря космонавтике появились застежки-молнии, липучки, спортивные кроссовки и даже тефлон. На самом деле нет. Современные застежки-молнии были запатентованы еще в 1913 году, а липучки - в 1955-м, хотя последние действительно поначалу использовались как элементы одежды для астронавтов, аквалангистов и горнолыжников. Спортивная обувь, конечно, тоже не изобретение космической эры, но амортизирующая подошва как элемент современных кроссовок появилась в быту землян также благодаря ботинкам астронавтов миссий «Аполлон». Тем не менее отрасль сделала мощный вклад в материалы, которые используются в спецодежде и даже в обиходе обычных людей.